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Introduction

Approximation Theory is multifaceted theory. Positive linear operators play an impor-
tant role in this realm. They are used in order to obtain qualitative results expressed by
the convergence of approximating functions toward a prescribed function. The rate of
convergence in such a process is described in terms of specific inequalities and involving
moduli of continuity. Properties of the approximated functions can be used in order
to obtain better rates of convergence. In this sense convex functions and generalized
convex functions can be approximated with a higher speed if we choose suitable classes
of positive linear operators.

On the other hand the degree of smoothness of a function influences the degree
of approximation. In this context the Voronovskaja type results play a significant
role. The behavior of a positive linear operator Ln with respect to the polynomials
is important for computing its moments and central moments which are essential in
establishing Voronovskaja type results. Therefore, the eigenstructure of Ln provides
important information concerning the images of polynomials under Ln. In particular
the kernel of Ln is an important subject of study.

Starting with a given sequence of positive linear operators, some modifications
could have better approximation properties or better shape preserving properties. In
this sense Kantorovich type modifications are often used. The iterates of positive linear
operators are important in Approximation Theory as well as in Ergodic Theory. The
convergence of such iterates can be studied in some instances by using results and
algorithms from linear algebra.

Classical positive linear operators usually preserve the affine functions. In the last
years special attention has been paid to the construction of new sequences preserving
one or two prescribed functions. This enlarged the family of functions which can be
approximated using positive linear operators.

The present thesis is concerned with topics related to the above context. This
Introduction is followed by 4 chapters and a list of references.

Chapter 1, ”Voronovskaja type results for sequence of operators”, targets two
important aspects. Firstly, we show Voronovskaya type formulas that can be ”differ-
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entiated” (by changing the order of limit and differentiation), or which are associated
with operators fixing two given functions. Secondly, we get new results regarding some
special sequences of positive linear operators previously investigated in literature; in
particular their Voronovskaya formula can be as well ”differentiated”. Appell polyno-
mials are involved in the study of the moments of these operators.

Section 1.1 is dedicated to the ”differentiation” of a Voronovskaya formula. The
main outcome can be presented as: if the Voronovskaya formula for the sequence
(Ln)n≥1 can be ”differentiated”, then the formula associated with the operators modi-
fied in the sense of [14] can be also ”differentiated”.

Within Section 1.2 we talk about operators preserving two monomials or, more
generally, two powers of a given bijection that are obtained by modifying classical
ones.

Moreover, approximation properties are described in correlation to their associated
Voronovskaya operators. Concretely, we start with a classical sequence of positive
linear operators (Bernstein, Meyer-König and Zeller) and modify it to obtain a new
sequence of operators which preserve the monomials xi and xj. For such modified
sequences we establish the Voronovskaja formulas and compare the magnitude of the
Voronovskaja operators. This gives information about the quality of approximation.
We find intervals on which one sequence provides approximation better than other
sequences.

When a positive linear operator fixes two functions φ, ψ, a subject of interest is
to consider its behaviour with respect to functions which are convex relative to {φ, ψ}
(see [14]). The study of their behaviour with respect to the coresponding generalized
convex functions could be a topic of further work. In this sense the Voronovskaja limit
of a sequence of operators gives important information concerning the behaviour of the
operators in relation with suitable classes of convex functions.

In [75] and [20] the authors introduced a sequence of positive linear operators Ln

described in terms of divided differences or, equivalently, in different terms. Across
Section 1.3 we show that these operators possess the property of commutativity with
the ordinary differential operator; consequently, they are invariant under the Kan-
torovich type modification. We give explicit expressions for the images of exponentials
and trigonometric functions under Ln. Furthermore, we show that for each fixed n the
images of the monomials under Ln form a sequence of Appell polynomials. This leads
to some algebraic identities involving the Stirling numbers of second kind. In addition,
results showing that the central moments of Ln are constant functions for which we
provide estimates, are mentioned.

The final section of this chapter features the topic of recently introduced Rathore
type operators Rn,c. Concerning these operators we provide Voronovskaya type results
and a comparison with the extended Szász-Mirakjan operators. Observing that the
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condition f (3) ≥ 0 expresses a property of generalized convexity, we intend to extend
the result of the type mentioned in Remark 1.9 to other classes of generalized convex
functions.

Chapter 2 is entitled ”Positive linear operators: eigenstructure and applications
to difference equations”. In this chapter we consider the operators given in Section 1.3,
acting on C(R). Section 2.1 is devoted to the operators Ln restricted to polynomials.
In order to describe the eigenstructure of operators we investigate the matrices of
Ln : Π2k → Π2k, respectively Ln : Π2k+1 → Π2k+1, with respect to the monomial
bases. The kernel of the operator Ln acting on C(R) is subject of study in Section
2.2. This kernel is related to the set of solutions of a difference equation. Given
T > 0 and p ∈ Πm, we provide three algorithms in order to find q ∈ Πm+1 such that
q(x + T ) − q(x) = p(x), x ∈ R. The algorithms are useful in inverting the operator
Ln : Π → Π and, ultimately, in solving some difference equations. Section 2.3 deals
with the eigenstructure of the Beta type operators from the general family depending
on the parameters α > −1, β > −1. We find the eigenvalues in explicite forms and
give recurrence relations for the coefficients of the eigenpolynomials. The limiting case
when α → −1, β → −1 was considered in [39]. Some results from [39] are covered by
our results from Section 2.3.

Chapter 3 intends to present instances of modified positive linear operators, their
iterates and systems of linear equations. The cases of the Kantorovich modifications of
linking operators and Stancu modifications of Bernstein operators are brought in this
topic.

Section 3.1 deals with the Kantorovich modifications of linking operators and presents
their study with respect to the limit of iterates and the invariant measure. In particular
we give a new proof of [12, Theorem 5.1]. A concrete example, where the invariant
measure is the Lebesgue measure, is presented at the end of the section.

In Section 3.2 we consider a family of Stancu operators, see [41], [40], and investigate
the limit of the iterates of such an operator. In finding the limit of the iterates an
essential step is the solution of a linear system of algebraic equations.

Section 3.3 is devoted to a modification of the sequence of Bernstein operators
Bn on C[0,1], introduced by Schnabl [78] in order to investigate the global saturation
of the sequence (Bn). We show that they can be obtained as a particular case of
Stancu operators, and so the results from Section 3.2 can be applied. The operators
Cn introduced by Schnabl do not preserve the constant function e0. In fact, Cne0 =
n− 1

n
e0. Therefore, the Voronovskaja formula for the sequence Cn established by

Schnabl contains in the right hand side not only f ′ and f ′′, but also the function f
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(see (3.16)). We consider the operators An =
n

n− 1
Cn, n ≥ 2. The Voronovskaja

formula for the sequence (An) is simpler (see (3.17)). The section ends with the result
concerning the rate of convergence of the sequence (An).

As mentioned above, the limit of the iterates is determined by solving a system
of linear equations. In this sense an algorithm A(p), p ∈ R is presented in Section
3.4. A(1) concides with the EMML algorithm (the Expectation-Maximization (EM)
algorithm in order to compute Maximum Likelihood (ML) estimates; the same algo-
rithm is used in the setting of restoration of astronomical images). A(−1) is a version
of the Image Space Reconstruction Algorithm (ISRA). At the end of the section the
algorithm is illustrated with numerical experiments.

Usually for practical purposes, a sequence of positive linear operators is convergent
to the identity operator. Under a specific modification, with a probabilistic flavour, a
new sequence will converge towards an operator different from the identity, see, e.g.,
[13, 28]. In Section 3.5 we present results of this type involving a modification of Stancu
operators Ln,β,γ.

Section 3.6 gives a hint on possible further work related to the above stuff.

Chapter 4 is entitled ”Operators fixing exponential functions”. Several papers
can be found in the literature, dealing with positive linear operators which fix certain
functions. A starting point was the paper written in 2003 by P.J. King [53] who
constructed positive linear operators on C[0, 1] fixing the constant function 1 and the
function x2. Positive linear Bernstein-type operators fixing 1 and a given function τ
with suitable properties were introduced and studied in [29]. Recently, operators fixing
two exponential functions were constructed. Aral, Cardenas-Morales, Garrancho [22]
considered a generalization of the classical Bernstein operators introduced by Morigi
and Neamtu in 2000. Specifically, they focus on a sequence of operators that reproduce
the exponential functions exp(µt) and exp(2µt) , µ > 0. Other papers devoted to
operators fixing specific functions are [5], [11], [14], [22], [29], [36], [45].

We modify the Bernstein-Stancu operators such that the new operators S̃n preserve
the functions expµ and exp2

µ, µ > 0. This property is presented in Lemma 4.2 ii) and
iii). A Voronovskaja type result for the newly introduced operators can be found in
Theorem 4.1. Special classes of generalized monotone functions and convex functions
are considered in this chapter. Shape preserving properties of the operators S̃n with
respect to these classes of functions are described in Section 4.1. Section 4.2 is devoted
to a comparison between the operators S̃n and the classical Bernstein-Stancu operators.
For some functions we present graphical experiments showing that the operators S̃n

provide a better approximation.
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19 (2022).

[10] A.M. Acu, M. Dancs, M. Heilmann, S.V. Paşca, I. Raşa, A Bernstein-Schnabl
type operator: applications to difference equations, Applicable Analysis and Dis-
crete Mathematics, 16(2), (2022), 495-507.

79

8



[11] A.M. Acu, V. Gupta, On Baskakov-Szasz-Mirakyan-type operators preserving
exponential type functions, Positivity, 22(3):919-929, 2018.

[12] A. M. Acu, H. Heilmann, I. Rasa, Eigenstructure and iterates for uniquely ergodic
Kantorovich modifications of operators II, Positivity, 25 (2021), 1585-1599.

[13] A. M. Acu, M. Heilmann, I. Rasa, A. Seserman, Poisson approximation to the
binomial distribution: extensions to the convergence of positive operators. Rev.
Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 162 (2023).
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