

Doctoral School for Engineering Sciences and Mathematics

Doctoral Study Field: Engineering and Management

PHD DISSERTATION

Lean University: Implementing New Methods and Concepts. From Pushing Improvements to Pulling Creative Thinking and Innovation with Design Thinking

Ph.D. Candidate:

RALUCA MIHAELA, ROCA (BÂRSAN)

Scientific Coordinator:

Prof. univ. dr. ing. CLAUDIU-VASILE, KIFOR

Contents

List of	Abbreviations	5
Table o	of Figures	6
List of	Tables	8
Keywo	ords	9
1. In	troduction	10
2. Re	esearch Methodology and Objectives	12
2.1.	Motivation for Choosing the Research Problem	12
2.2.	Research Questions	13
2.3.	Research Objectives	14
2.4.	Research Methodology	14
2.5.	Thesis Structure	14
3. Le	ean – From PUSH to PULL	17
3.1.	Literature	17
3.2.	LEAN In Higher Education.	21
3.3.	Case Study 1 - LEAN Implementation in Manufacturing	23
4. Fr	om PUSH to PULL in Higher Education	27
4.1.	Problem Based Learning Approach	32
4.2.	Case Study 2: PBL Pilot Project in Romania vs. International PBL Profiles	33
5. Le	ean and Agile Approaches to Design Thinking With Applications in Education	54
5.1.	Lean Approach to Design Thinking	54
5.2.	Agile Approaches and Design Thinking	68
6. Ca	ase Study 3 - Design Based Implementation of Continuous Improvement	75
6.1.	SERP Model	75
6.2.	Design Thinking Interventions – Author's Contributions	76
6.	2.1 Intervention 1A and 1B – September 2020	76

	6.2	2.1 Intervention 1A and 1B - September 2020	76
	6.2	2.2 Intervention 2	79
	6.2	2.3 Intervention 3	80
7.	Pro	oposed Model for Designing a Lean University with Participatory Action	Research90
	7.1.	Participatory Action Research	90
	7.2.	Science Shops	92
	7.3.	Proposed PAR and Science Shop Approach to the SERP Model	93
8.	Αυ	thor's Contributions	100
	8.1.	Theoretical contributions	100
	8.2.	Practical contributions	101
	8.3.	Scientific contributions	102
	8.3	3.1 Publications	102
	8.3	3.2 Conferences	102
	8.3	3.3 Programs	103
	8.3	3.4 Projects	103
9.	Со	nclusions	104
10	. E	Bibliography	109
11	. A	Annexes	114
	11.1.	Annex 1	114
	11.2.	Annex 2	121
	11.3.	Annex 3	122
	11.4.	Annex 4 – List of Publications	125

List of Abbreviations

Abbreviation	Description
CI	Continuous Improvement
DT	Design Thinking
US - NRC	United States National Research Council
PAR	Participatory Action Research
PBL	Problem Based Learning
SERP	Strategic Education Research Partnership

Table of Figures

Figure 3.1 Most commonly used Lean tools according to interviewees	24
Figure 4.1. Angelo's Fourteen General Principles	31
Figure 4.2. Guiding steps of PBL	45
Figure 4.3. RO-Student-feedback after audit class	47
Figure 4.4. EN-Student-feedback	48
Figure 4.5. EN-Student-feedback regarding effectiveness after audit class	49
Figure 4.6 EN-Student-learning preferences 2018	49
Figure 4.7. EN-Student-feedback 2018	50
Figure 4.8 Top skills according to importance	51
Figure 4.9 Top skills used to work with others	52
Figure 4.10 Respondent's profession	53
Figure 5.1 The three pillars of Design Thinking according to HPI d.School	57
Figure 5.2 Design Thinking Steps according to Standford d.School	58
Figure 5.3 Design Thinking Steps according to HPI d.School	59
Figure 5.4 Design Thinking Steps according to IDEO's Toolkit for Educators	59
Figure 5.5 Design Thinking Compared to Lean	60
Figure 5.6 LOOP. From creating to making choices in Design Thinking	66
Figure 5.7 Design Thinking Loop according to IBM	66
Figure 5.9 PBL and Design steps	69
Figure 5.10 Proposed Design Thinking Approach for University Roll-Out	71
Figure 5.11 DT – Lean – Agile Framework	73
Figure 6.1. SERP Model	75
Figure 6.2 TeachOn Platform developed by university teachers and staff	78
Figure 6.3 Miro screenshot of the 4-day workshop in February 2021	80
Figure 6.4 Jamboard screenshot of the prototyped concept	81
Figure 6.5 Perceived restrictions for collaboration.	82
Figure 6.6 Perceived facilitators for collaboration	83
Figure 6.7 University Landscape Canvas 2023	88

Figure 7.1. CI in Engineering and Social Sciences. Common threads	91
Figure 7.2. Building a collaborative teaching community	93
Figure 7.3. Total Group of Educators Reached Between 2020-2024	92
Figure 7.4. D-School Participants CI Readiness Score	97
Figure 7.5. Core Group of Educators for the Model	98
Figure 7.6. SERP Collaborations	99
Figure 7.7 Proposed adaptation of the SERP Collaboration model	99

List of Tables

Table 3.1 Level of Focus of LHE Initiatives	23
Table 4.1. PBL Profiles	35
Table 4.2. EN-Student-feedback after audit class	47
Table 5.1 Matrix with tools for the Research-Phase according to Ser	rvice Design Tools
Project*	61
Table 5.2 The "How" in the Research-Phase according to Service Des	ign Tools Project*
	61
Table 5.3 Matrix with methods for the Ideation-Phase according to Se	rvice Design Tools
Project*	61
Table 5.4 The "How" in the Ideation-Phase according to Service Desi	ign Tools Project*
	61
Table 5.5 Matrix with methods for the Prototyping-Phase according	to Service Design
Tools Project*	62
Table 5.6 The "How" in the Prototyping-Phase according to Service Des	sign Tools Project*
	62
Table 5.7 Matrix with methods for the Implementation-Phase according	g to Service Design
Tools Project*	62
Table 5.8 The "How" in the Implementation-Phase according to Ser	rvice Design Tools
Project*	62

${\bf Keywords}$

- **❖** Lean University;
- Continuous Improvements;
- Design Based Implementation Research;
- ❖ SERP Model;
- Design Thinking.

Summary

To accomplish the scientific endeavor, the thesis has been structured into 10 chapters, 108 pages, 11 tables, 35 figures and two annexes as follows:

Chapter 1 – Introduces the need for continuous improvement in the manufacturing industry and in engineering education as well as challenges and requirements that come with new 21st century skills.

Chapter 2 – The novelty of this thesis is the exploratory case study methodology that not only addresses the industrial (manufacturing) sector, but also various aspects of the educational sector and educational management and strategy when it comes to continuous improvement initiatives, challenges and opportunities to change. The motivation for this research comes from the author's experience working as a continuous improvement engineer, as the first employee to implement a continuous improvement culture inside a manufacturing company more than ten years ago and as the first employee of a new structure inside a Romanian university to use design to take on continuous improvement activities in Higher Education.

Chapters 3, 4 and 5 look at the existing literature on Lean Manufacturing, Lean in Higher Education and the combination or lean and agile approaches in Higher Education and in the industry. Besides Lean, which is probably one of the most written and talked about CI method in manufacturing after the Toyota Production System, the thesis also looks at some of the most popular CI initiatives and used method in Higher Education.

Two case studies have been created based on qualitative data obtained through interviews and focus groups with experts in five employers nominated as top of the industry in 2019 and also with data from Higher Education Educators obtained through two institutional projects in Romania. Here the idea emerged to use agile methodologies and ways of working in sprints and iterative cycles in order to test and implement lean methods of working. Design Thinking, being and iterative, creative problem solving method, seemed like a good starting point.

Chapter 6 focuses more on the reasons why CI initiatives in Higher Education fail or are not scaled after pilot projects. Besides the barriers and opportunities identified in the literature, a third case study is created based on three smaller design interventions created inside a university in Romania between 2020 and 2024. These design interventions are the result of the author's research, but also continuous learning and exploration of various Design Thinking approaches (starting with the HPI Design Thinking approach in 2019, Educational consultants approach in 2018, 2020 and 2021, Stanford d.school approach, d-school Afrika approach and

Design Thinkers Academy approach). Although DT is often used as a recipe by non-researchers and sometimes even without going through all process steps, except for the Google famous five day sprint (Knapp, Zeratsky, & Kowitz, 2016), there is no model with time slots for each DT stage or instrument. There are around 84 instruments and short activities published by the Stanford d.school in 2021 (Stein Greenberg, 2021), so it is clearly a matter of choosing the right activity and instrument according to the challenge a team is working on solving or according to the aim of the workshop. This is the reason why the exploratory research was conducted and a lot of iterations of the formats were designed. From a two-day format for the first iteration in September 2020, to a four-day format in 2021 and then even to ten-week courses in 2022. All three formats were chosen and designed by the author and continuously adapted according to feedback and observations during the sessions.

Chapter 7 – By looking at new methodology and new models and structures implemented in the United States of America (Science Shops, SERP Model, Design Based Implementation Research) and adapting those models to local context, by using the data obtained in all three case studies, plus a CI Readiness Questionnaire, this thesis proposes a new structure and model of working for universities in Romania that want to implement and scale CI initiatives and projects.

Chapters 8 and 9 present the author's contributions and conclusions, divided into 3 categories: CI readiness, barriers and opportunities in implementing CI initiatives and programs in Higher Education and Design Thinking as a strategy to overcome resistance to change and organizational barriers and work on initiatives that can foster CI readiness, by creating new structures that combine design, research and education inside an interdisciplinary team. Chapter 10 contains the bibliography.