THE MANAGEMENT IN EXPOSURE KERATOPATHY

Summary

Scientific coordinator: Prof. Dr. Adriana Stănilă

PhD: Andreea Botezan

SIBIU,

2016
Summary

I. General considerations..4

Chapter 1. Introduction ..5

Chapter 2. EXPOSURE KERATOPATHY ... 6
 2.1. Definition..6
 2.2. Signs and symptoms ...6
 2.3. Ethiopathogenie ...6
 2.4. Facial nerve palsy ...8
 2.5. Palpebral malpositions ..18
 2.6. Thyroid ophthalmopathy ..19
 2.7. Muscle tone reduction ...25

Chapter 3. MANAGEMENTUL KERATOPATIEI DE EXPUNERE 28
 3.1. Management of paralytic lagophthalmos ...28
 3.2. Management of palpebral malpositions ..33
 3.3. Management of thyroid ophthalmopathy ..34
 3.4. Management of muscle tone reduction conditions ...37

II. Personal Research..38

Chapter 1. Research hypothesis. ..38

Chapter 2. Aim of study ..40

Chapter 3. Material and Method...41

Chapter 4. Clinical Cases ..52
The management of exposure keratopathy is an extremely complex process and today multiple therapeutic options are available.

To ensure the success of the therapeutic process it is important to know the main cause and the gravity of the disease. Frequently, a multidisciplinary approach is required for an efficient management.

Exposure keratopathy is a condition which cause is linked to an excessive evaporation of the lacrimal film due to some eyelid occlusion abnormalities which will result in the dehydration of superficial layers of the cornea.

Exposure keratopathy is a clinical diagnosis based on the patient’s history and physical examination. Ophthalmic examination in case of patients with presumed dry eye syndrome diagnosis reveals the fact that the exposure of the cornea is the main etiology.

Common symptoms include pain, ocular foreign body sensation, blurry vision, epiphora, photophobia. Signs include incomplete eye blinking, lagophtalmos, changes of the lacrimal film, formation of corneal filaments, epithelial defects, corneal edema with corneal thinning and perforation in severe cases.

The management of exposure keratopathy requires the management of paralytic lagophtalmos, eyelid malpositions, thyroid ophthalmopathy and that of the conditions which determine the reduction of the muscle tone.
PERSONAL RESEARCH

Proper eyelid closure as well as a normal blink reflex are essential to maintain the integrity of the corneal surface and a stable tear film.

Lower lubrication of the ocular surface due to lagophthalmos or due to the lower rate of blinking will cause corneal exposure and subsequent keratopathy which may develop corneal ulceration and infectious keratitis.

The diagnosis and treatment of exposure keratopathy is based on the patient’s history data as well as clinical examination. A careful history should be performed to determine the etiology of lagophthalmos and it should contain information related to trauma, surgery of the face or eyelids, suggestive symptoms for thyroid disease, previous infection with herpes zoster, history of obstructive sleep apnea.

The most frequent cause of lagophthalmos is paralysis of the facial nerve, usually idiopathic (Bell’s palsy) but it can be a cause of trauma, infection, strokes, eyelid surgery, various tumor formation or even surgical techniques to have them removed. It can also represent a particular thyroid disease, a tumor, acoustic neuroma.

Another variant of lagophthalmos is nocturnal lagophthalmos which is a more discreet form of bilateral lagophthalmos. It can become obvious while the patient is sleeping and as a result it is a disease which is difficult to diagnose as patients are hardly aware of the fact they may be sleeping with their eyes half-open. A slight decrease in the action of the orbicularis is noticeable.

Patient exam includes:

- Eyelid inspection in order to evaluate possible malposition. The eyelids should be examined for ectropion, entropion or retraction.
- Eyelid and globe testing
- The patient is asked to look down and to slightly close both eyes. Lagophthalmos is present when a space remains between the upper and lower eyelid margins. The degree of lagophthalmos is quantified by measuring the latter space, in millimeters, with a ruler.
- Determination of the blinking rate
- Determination of the presence and quality of Bell’s palsy
- Assessing muscular power of the orbicular according to the generated force in the attempt of eye closing
- Testing the corneal sensitivity by applying soft cotton without the instillation of anesthetics
- Tear secretion evaluation through Schirmer test and the breaking time of the tear film

- Slit lamp examination using vital dyes to highlight the extent of corneal damage

The method of treatment varies according to the etiology, the severity and estimation of the duration of lagophthalmos and should be individualized for each patient.

Therapeutic means are multiple, some of which are temporary if lagophthalmos is discreet and functional recovery is anticipated, while some are permanent if lagophthalmos is severe and carries on more than initially anticipated.

Starting from the premise that lagophthalmos and secondary keratopathy is an extremely severe condition for patients with impact on life quality and socio-professional integration because of the symptoms determined by the affected eye area as well as the major esthetic changes, this his paper aims to examine the therapeutic point of view of the conservative one and surgery.
Aim of study

1. To evaluate the most appropriate therapeutic procedure, conservative or surgical in managing exposure keratopathy while taking into account the etiology and degree of functional loss.

2. To emphasize the effectiveness of the technique of gold weights implant within the upper eyelid as the main method of surgery performed for exposure keratopathy and persistent lagophthalmos.

3. To observe the evolution of patients with exposure keratopathy at varying intervals depending on the chosen therapeutic method.
Material and Method

A retrospective observational analytical study was conducted using a number of 62 hospitalized with exposure keratopathy, treated in January 2006-december 2015 in the Department of Ophthalmology of the Clinical Hospital Sibiu.

Material:

The considered parameters were:

- Patient’s demographic data
- Cause of exposure keratopathy based on patient’s personal history
- Family history of exposure keratopathy and other associated pathology (thyroid disease, diabetes, high blood pressure)
- The length of time form the onset of lagophthalmos until the moment of finding

From all the patients, the main cause of exposure keratopathy and lagophthalmos in 53 patients was facial nerve paralysis, of which 32 cases were Bell palsy and 21 cases of facial paralysis of other etiologies , in 4 cases thyroid ophthalmopathy and in 5 patients involutive ectropion.

Patient’s ophthalmic examination included:

- Evaluation of lagophthalmos degree in presentation, measured in millimeters with a ruler from the margin of the upper lid to the margin of the inferior lid in pupillary vertical plan, with the eyes opened to determine the height of eye fissure and with closed eyes for lagophthalmos .For patients with paralytic ectropion ,the measurement was performed form the margin of the upper eyelid to the lower limbus.

- Corneal sensitivity was determined by applying soft cotton over the cornea without previous anesthetic instillation

- Lacrimal secretion was measured with Schirmer tests

- Exoftalmometry measured with Hertel exoftalmometer in case of patients with thyroid disease

- Slit lamp examination of the anterior pole was performed using fluorescein stain to determine the grade of the exposure keratopathy:

 Mild - punctate epithelial inferior epithelial erosions or paracentral in proptosis

 Moderate-persistent epithelial defect

 Severe-corneal ulcer
Method of study

The elected treatment for each patient included the cause, the duration and the severity of lagophthalmos.

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Months</th>
<th>Prolonged/Permanent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical Antibiotics</td>
<td>External palpebral weight</td>
<td>Gold weight implantation</td>
</tr>
<tr>
<td>NSAD’s</td>
<td>Temporary tarsorrhaphy</td>
<td>Ectropion correction</td>
</tr>
<tr>
<td>Artificial tears and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ointments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corneal lubricants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapeutic contact lenses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results and discussion

During January 2006-december 2015 within the department of Ophthalmology of the Clinical Hospital in Sibiu, 62 cases of exposure keratopathy were hospitalized and treated.

Based on the patient’s personal history it has been established for each patient the determinant cause of exposure keratopathy.

Distribution of etiology for EK

The main cause of exposure keratopathy in the studied group was paralysis of facial nerve of various etiologies and a smaller proportion of cases with palpebral malformations –senile ectropion and thyroid ophthalmophaty.

The extensive etiologie of facial nerve paralysis prevents the accurate estimation of the incidence of facial nerve palsy of a certain cause.

The most frequent cause of facial nerve palsy was idiopathic palsy, also known as Bell’s palsy, representing 51% according to Rahman (2007), followed by trauma 22% and Ramsey-Hunt syndrome 7 %. According to Hohman (2014), Bell’s palsy represents 38% of facial nerve palsy surgery for acoustic neuromas 10%, tumors 7%, iatrogenic lesions 7%, Ramsey-Hunt syndrome, 7%,benign lesions 5%,congenital paralysis 5% ,Lyme disease 4 % .

In our studied group, Bell’s palsy resulted in 62.75% of the facial nerve paralysis cases, followed by tumor causes and an equal percentage of 5.88 of traumas and stroke causes.
FNP etiology

Facial nerve paralysis affects all categories of population irrespective of age, gender or race. So far, there is no consensus if it mainly affects males or females.

In case of our study group, gender distribution of patients was relatively equal with a slight predominance of female gender.

Gender distribution of EK

In most cases, Bell’s palsy occurs among adults according to some studies with a slight predominance of patients over 65 with an incidence of 59 cases per 100,000 inhabitants as opposed to children under 13 presenting an incidence of 13 cases per 100,000 inhabitants. Other studies have recorded the maximum of Bell’s palsy between 15-45 years. Arie J.Nemet and co. have exposed in a different study that there is a clear incidence of age related with a marked increase in incidence with each decade but with a slight decrease in incidence after the age of 85 as a result of possible case underreporting.
A similar result can be seen in case of studied patients, which incidence reaches a maximum for the 60-80 age group and quite lower for the 40-60 age group.

Age distribution for BP

The most frequent tumors which affect the facial nerve are the acoustic neuromas, facial tumors (cholesteatomas, dermoid cyst, hemangiomas, meningiomas) and parotid gland tumors.

According to Mathies and Samii, 17% of patients with acoustic neuroma showed facial nerve dysfunction before surgical removal.

Tumor cause in FNP

Both non-penetrating and penetrating trauma can cause facial nerve injury.
Car accidents cause 31% of the facial nerve damage which results in temporal bone fractures, followed by accidents caused by falls.

Thyroid ophthalmopathy was present as the cause of exposure keratopathy in 4 of the studied cases. All cases were females aged between 40 and 60. Three of which presented with hyperthyroidism, only one case was in euthyroid state. Two of the patients were smokers.

The disease is more common in women F/M=4/1, yet the proportion of men affected increases as the severity is higher. Male/female ration is 9.3/1 in mild forms of impairment, 3.2/1 in moderate forms and 1.4/1 in severe ophthalmopathy.

Senile ectropion was the cause of 6 exposure kerathopathy cases of the studied group. Patients were included in age groups of 70-80 years, four case of which were of male gender and two of female gender. This particular form of senile ectropion was reported as 2.9% to 5.1% in male gender and 1.5% in female gender.

Management of the patients with exposure keratopathy was different depending on the etiology, its degree as well as its duration in early recovery.

The degree of exposure keratopathy was determined for all patients by the use of fluorescent stain and slit lamp as examination means, thus being classified in mild (33 cases), moderate (7 cases) and severe (22 cases).

Classification of EK

The management of patients includes a wide range of therapeutic possibilities ranging from conservatory methods to treat symptoms of dry eye to complex surgical techniques depending on the gravity.
Therapeutic options in patients with EK

Management of exposure keratopathy caused by paralytic lagophthalmos

Proper treatment for corneal protection in case of patients with facial nerve paralysis depends on the estimated duration of functional recovery of the functional nerve and corneal risk level, determined by the degree of lagophthalmos, the presence of Bell’s palsy and the presence or absence of paralytic ectropion.

1. Conservative treatment

Of all 52 patients with facial nerve paralysis and paralytic lagophthalmos, 29 cases of idiopathic etiology (Bell palsy) presented mild form of exposure keratopathy and discreet lagophthalmos with functional recovery outlook in a short amount of time. The patients received only conservative treatment, corneal protector and were monitored every two weeks until complete lagophthalmos remission.

Conservative treatment consisted of frequent administration of lubricating ointments such as artificial tears during the day, NSAID’s, topical antibiotics, trophic corneal ointments and more binding ones during the night.

Tear test was performed in all cases using the Schirmer test to determine the degree of dry eye, mild, moderate or severe.
Dry eye syndrome degree

Improvement of the quality of the tear film can be made by administering artificial tears frequently, improvement of lipid component by applying warm compress or by oral administration of products containing Omega 3 fatty acids, according to some studies.

Scleral contact lenses were described as being an alternative to tarsorrhaphy for patients with exposure keratopathy and corneal anaesthesia, thus providing effective protection in an optimizing esthetic manner and visual function.

Injecting botulinum toxin is a good temporary method with a low risk with an effect which lasts up to 48 days is considered to be an alternative method for postoperative facial nerve paralysis when the facial nerve is anatomically intact.

From a number of 29 patients with Bell’s palsy who received only conservative treatment, all of them achieved complete functional recovery without consequence in varying intervals of time, the average recovery being estimated in 6 weeks.

The evolution of Bell’s palsy with conservative treatment
Complete and spontaneous recovery of Bell’s palsy is produced in 70% of cases. Usually, remission starts within 3-4 weeks, with complete recovery up to 6 months.

Patients who presented incomplete forms of paralysis, had obtained complete spontaneous recovery in 93-98% of cases.

Long-term complications may occur just after facial nerve paralysis which include synkinesis, crocodile tear syndrome and seldom facial spasm.

2. **External palpebral weights**

Temporary treatment with external palpebral weights was assessed by Seiff and co. and had been shown to be effective in most cases.

These weights work by passive eyelid closure and supports patient’s less frequent use of artificial tears and ointments. They are proven to be effective in management of paralysis with short term recovery and were used over much more extensive periods in some cases. They are also affective as a temporary treatment method until temporary surgery.

External palpebral weights was a therapeutic option in 5 of the studied cases.

3. **Surgery**

In 22 of the studied cases of exposure keratopathy and paralytic lagophtalmos, the degree of corneal damage and anticipated functional recovery required surgery as a management method.

![Graph showing the number of procedures for different conditions](image)

Surgical techniques

The implantation of gold weight in the upper eyelid was the preferred surgical technique in managing exposure keratopathy, accentuated paralytic lagophtalmos with the perspective of recovery, being conducted in 20 of the studied cases together with the correction of the paralytic ectropion in 8 cases.

The concept of weight implantation in the upper lid was first introduced in 1950.
It is a relatively easy technique to perform which has a low rate of complications and is effective both in the initial stages as well as in the advanced facial palsy and is completely reversible if functional recovery of facial nerve is obtained.

The weights were individually manufactured in 24 karat gold by a local jeweler. Implanted weights varied between 1.2 and 1.6 grams.

The success of surgery was estimated on the measurement of lagophthalmos in millimeters one month post-op. The results were compared to the results obtained preop, aiming as a criteria for successful intervention to reduce the degree of lagophthalmos by 50%. None of the presented cases showed overcorrection one month post-op, which was by the absence of ptosis for more than 2 millimeters.

Reduction of lagophthalmos

<table>
<thead>
<tr>
<th>Statistical regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple R</td>
</tr>
<tr>
<td>R Square</td>
</tr>
<tr>
<td>Adjusted R Square</td>
</tr>
<tr>
<td>Standard error</td>
</tr>
<tr>
<td>Observations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANOVA</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>Significance F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>22.91125</td>
<td>22.91124871</td>
<td>25.11258</td>
<td>0.000107031</td>
</tr>
</tbody>
</table>
A significant positive parallel is highlighted between the degree of post-op lagophthalmos by Pearson coefficient $r = 0.772218$ and $p = 0.000107031$ which is <0.05 and which rejects the null hypothesis that assumes the existence of statistical significance.

All patients with gold weight implant which were included in our study had had a positive development. There were no infectious complications, migration or extrusions. Only one case required explanation due to complete functional recovery 3 months post-op.

In eight cases, surgical correction of paralytic ectropion was carried out simultaneously with the gold weight implantation, using Duverger modified technique in all cases.

There were no intraoperative complications in any cases such as bleeding or post-op infection, wound dehiscence, or persistence of ectropion.

All patients with gold weight implant were immediately evaluated after surgery from one month to a year.

Post-op outcome was evaluated as satisfactory after gold weight implant after the patients were questioned regarding the persistence of pain symptoms, ocular redness, tearing degree, cosmetic appearance.

Management of keratopathy determined by thyroid ophtalmopathy

The management of patients with thyroid ophtalmopathy aimed at managing acute inflammatory phase, stabilizing the lacrimal film and the management of upper limbic keratoconjunctivitis.

In the inflammatory stage with congestive exophtalmia, all patients received medical treatment with systemic corticosteroids administered orally and gastric protection.

Stabilization of the tear film is essential for the protection of the ocular surface in patients with thyroid ophtalmopathy. All patients included in our study received topical treatment with lubricants such as artificial tears instilled frequently during the day and overnight application of ointments.
Superior limbic keratoconjunctivitis management included frequent artificial tears instillation and corneal lubricants.

All patients had a positive evolution after topical and systemic treatment with the remission of inflammatory phenomena. Patients were monitored regularly both ophthalmic and endocrinologic.

Exposure keratopathy management associated with senile ectropion

In 6 of all studied cases, exposure keratopathy was secondary to senile, involutional ectropion, which is considered to be the main clinical form of presentation of ectropion.

Patients with involutional ectropion and exposure kerathopathy received conservative treatment with artificial tears and corneal lubricants.

Surgery of ectropion was performed in all cases due to chronic ocular surface irritation despite topical treatment, the presence of exposure keratopathy, hiperlacrimation due to lacrimal punctum eversion in some cases or reflex in others due to the chronic irritation of the ocular surface.

Postoperative results were positive in all cases, there were no intraoperative or postoperative complications, no residual ectropion with adequate coverage of the ocular surface.
Conclusions:

1. Exposure keratopathy is a clinical diagnosis, based on the patient’s history, the data provided by ophthalmologic examination. It is a condition which left untreated can lead to complications threatening the visual function.

2. Management of exposure keratopathy should be individualized for each patient and should consider the underlying cause, the anticipated length of recovery, the degree of lagophtalmos and the function of the orbicularis, the patient’s age, the presence of Bell’s palsy, corneal sensitivity.

3. The causes of exposure keratopathy vary, the most common cause of the studied group was facial nerve paralysis of different etiology with the predominance of Bell’s palsy, eyelid malformations. These were expressed in the studied group by senile ectropion and some cases of thyroid opthalmopathy.

4. A great variety of techniques can be used to protect the ocular surface, both conservative and surgical depending on the gravity of exposure keratopathy and its main cause.

5. Cases of light degree of exposure keratopathy received only conservative treatment, protector of ocular surface and consisted of frequent instillation of artificial tears during the day, corneal lubricants, ointments at night and topical antibiotics.

6. External eyelid weights represented an effective nonsurgical treatment in cases were function recovery was anticipated in the short but also an adjunct therapy conservative treatment until the moment of surgery in other cases, as it is an easier and more comfortable for patients lowering the frequency of topical treatment use.

7. Cases of severe exposure keratopathy and persistent lagophtalmos in which functional recovery was not anticipated in short term, benefited from surgery, static procedures as gold weight implant on the upper lid, tarsorrhaphies and corrective surgery for ectropion were performed.

8. Implant of gold weights on the upper eye lid was the preferred method for patients who required surgery, a relatively easy technique to use, using local anesthesia. It is reversible, it causes a reduction in the degree of lagophtalmos ensuring adequate protection of the corneal surface, and was devoid of complications within the studied group.

9. Implant of gold weights in the upper lid improved subjective symptoms which decreased frequency of topic treatment administration. It increased the satisfaction of patients regarding eyelid closure during the day and during the night, also giving a satisfactory cosmetic appearance.
10. Tarsorrhaphy is an effective therapeutic method, ensuring adequate protection of the cornea, but with little usage because of the poor cosmetics and limited field of vision.

11. Surgery correction for paralytic ectropion, through Duverger modified method was successfully used as an adjuvant and simultaneous method to gold weight implant in some cases, improving postop outcome.

12. Management of thyroid ophthalmopathy aimed the stabilization of the tear film, increasing ocular surface lubrication, topical control of inflammation for protecting the tear film from excessive evaporation and protecting the cornea, in association with systemic corticosteroid treatment.

13. Surgical correction of the involutional ectropion using Kunt-Szymanovski method was found to be effective in protecting the eye surface in all cases of exposure keratopathy due to this type of eyelid malposition.
BIBLIOGRAPHY

1. Fatemeh Rajaii, MD, PhD, and Christina Prescott, MD, PhD. Management of Exposure Keratopathy; EyeNet Magazine; April 2014

4. Michael Giese, OD, FAAO . Revisiting Exposure Keratopathy; NorthWest Eye Surgeons; April 2015

10. Dumitrache Marieta, Neurooftalmologie, Editura universitara Carol Davila 2013, Pg 193-222

39. S Contractor & JG Hardman 2006, 'Injury During Anaesthesia', Continuing Education in Anaesthesia, Critical Care & Pain, vol. 6, no. 2, pp. 67-70

41. PN Nair & E White 2014, 'Care of the Eye During Anaesthesia and Intensive Care', Anaesthesia and Intensive Care Medicine, vol. 15, no. 1, pp. 40-43

42. E White 2004, 'Care of the eye during anaesthesia', Anaesthesia and Intensive Care Medicine, vol. 5, pp. 302-3

50. Jamie B. Rosenberg, MD; Lewis A. Eisen, MD; Eye Care in the Intensive Care Unit: Narrative Review and Meta-analysis; Crit Care Med. 2008;36(12):3151-3155.

60. Ellis MF, Daniell M. An evaluation of the safety and efficacy of botulinum toxin type A (BOTOX) when used to produce a protective ptosis. Clin Experiment Ophthalmol. 2001;394-399.

64. Ghid de neuro-oftalmologie. Adriana Stănilă, Ioan Ștefan Florian, 2007, pg 116

67. Schrom T. Lidloading in facial palsy. Laryngorhinootologie. 2007 Sep;86(9):634-8

110. Snyder MC, Johnson PJ, Moore GF, Ogren FP. Early versus late gold weight implantation for rehabilitation of the paralyzed eyelid. Laryngoscope 2001;111: 2109–2113

