

Universitatea Lucian Blaga Sibiu

Investeşte în oameni!

Proiect cofinanțat din Fondul Social European prin Programul Operațional Sectorial pentru Dezvoltarea Resurselor Umane 2007-2013 Axa prioritară: nr. 1: "Educația și formarea profesională în sprijinul creșterii economice și dezvoltării societății bazate pe cunoaștere" Domeniul major de intervenție 1.5.: "Programe doctorale și post-doctorale în sprijinul cercetării" Titlul proiectului: Integrarea cercetării românești în contextul cercetării europene-burse doctorale. Cod Contract: POSDRU/88/1.5/S/60370

Beneficiar:Universitatea Lucian Blaga din Sibiu

Eng. Rareș Lucian Marin

PhD. Thesis

Abstract

Scientific coordinator:

Prof. Eng. Paul Dan Brîndaşu, PhD.

Universitatea Lucian Blaga Sibiu

Investeşte în oameni!

Proiect cofinanțat din Fondul Social European prin Programul Operațional Sectorial pentru Dezvoltarea Resurselor Umane 2007-2013 Axa prioritară: nr. 1: "Educația și formarea profesională în sprijinul creșterii economice și dezvoltării societății bazate pe cunoaștere" Domeniul major de intervenție 1.5.: "Programe doctorale și post-doctorale în sprijinul cercetării" Titlul proiectului: Integrarea cercetării românești în contextul cercetării europene-burse doctorale.

Cod Contract: POSDRU/88/1.5/S/60370 Beneficiar:Universitatea Lucian Blaga din Sibiu

Eng. Rareș Lucian Marin

PhD. Thesis

Abstract

Transportation of Priority Parts in the Manufacturing Processes, Based on Intelligent

Evaluation Committee:

President of the Committee: Prof. Eng. Valentin Oleksik, PhD

Members:

Prof. Eng. Paul Dan Brîndaşu, PhD. – Scientific coordinator, Lucian Blaga University of Sibiu Prof. Eng. Petru Berce, PhD., Technical University of Cluj-Napoca

Prof. Eng. George Drăghici, PhD., "Politehnica" University of Timișoara

Prof. Eng. Laurean Bogdan, PhD., Lucian Blaga University of Sibiu

Thesis Table of Contents

List of figures	VII
List of tables	XI
List of abbreviations	VIII
CHAPTER 1 – Introduction	1
CHAPTER 2 – State of the art of the research of flexible manufacturing	g
systems	12
2.1. Generalities	12
2.2. Flexible manufacturing lines	
2.2.1. Job Shop manufacturing	
2.2.2. Flow Shop Manufacturing	
2.3. Transport devices and transportation systems	20
2.3.1. Criteria and classification of transported products	20
2.3.2. Short history of transport devices	20
2.3.3. Classification by constancy of transport devices	24
2.3.4. Classification by trajectory and type of action	24
2.3.5. Classification by location towards production	27
2.3.6. Classification by operation method	28
2.3.7. Classification by type of action	29
2.3.8. Classification by class	29
2.3.9. Classification by action area	30
2.3.10. Transport devices commonly used in production and storage	e 33
2.3.11. Generalization of transportation systems	39
2.4. Assembly problems on flow shop production lines	40
2.4.1. Introduction	40
2.4.2. Configurations of flow shop production lines	41
2.4.3. Assembly line balancing problem	46
2.4.4. Conclusions	52
2.5. Customized products manufacturing in the current context	52
2.5.1. Virtual prioritization	54
2.5.2. Physical prioritization	55
2.5.3. Stages of order lead time	

2.5.4. Decentralized manufacturing and its means	. 58
2.6. Modeling concepts	. 66
2.6.1. Modeling stages	. 67
2.6.2. Modeling product conceptions	. 68
2.6.3. Modeling and processing information flows	. 68
2.7. Simulation of manufacturing processes	.74
2.8. Mathematical modeling of flexible production lines	.75
2.9. The flexible manufacturing system Production 2000+	. 82
2.9.1. Aspects in achieving flexibility of P2000+	. 82
2.9.2. Presentation of the manufacturing system	. 82
2.9.3. Agent based control system	. 83
2.9.4. Control mof the size of buffer stocks	. 84
2.9.5. Dynamic allocation of tasks	. 85
2.9.6. Avoiding jams	. 86
2.9.7. Dynamic routing	. 87
2.9.8. Results of P2000+ simulation	. 87
2.10. Conclusions	. 87
CHAPTER 3 – Thesis objectives	.93
CHAPTER 4 – Feeder manufacturing	.95
4.1. Principle	.95
4.2. Models with gas bubbles	.95
4.2.1. Gas bubble model of mixed-model manufacturing process with	
planning and scheduling	.96
4.2.2. Gas bubble model of manufacturing process without planning an	
scheduling (FIFO)	
4.2.3. Gas bubble model of mixed-model manufacturing with the feeds system.	
4.3. Feeder manufacturing system – generalized principle	
4.4. Architecture of the feeder manufacturing system	
4.4.1. Workplaces	
4.4.2. Query nodes	
4.4.3. The feeder	
4.4.4. Transportation system	
4.4.4. Transportation system	
T.T.J. Laws of the recuer manufacturing system	100

4.4.6. Study regarding the distances traveled by parts depending on	
workplaces configuration on the production line	
4.5. Running process of the feeder system	
4.5.1. Order takeover process	112
4.5.2. Product preparation for production process	114
4.5.3. Production process	115
4.5.4. Agents of the feeder system	115
4.5.5. Structural diagram of the feeder manufacturing system	120
4.5.6. Communication diagram of the feeder manufacturing system	ı 121
4.6. Conclusions	121
CAPITOLUL 5 - Experimental analysis of the feeder manufacturing sy	
5.1. Experimental parameters	123
5.2. Description of the linear experimental system	124
5.3. Description of the feeder experimental system	126
5.4. Programming of main agents	128
5.4.1. Order agent	128
5.4.2. Query agent of the feeder entry query node	138
5.4.3. Other feeder agents	138
5.4.4. Exit agent	138
5.5. Design of experiments	138
5.6. Development of experiments	144
5.7. Interpretation of experimental results	165
CHAPTER 6 – Final conclusions, original contributions and future rese	earch
directions	166
6.1. Thesis structure	166
6.2. Contributions and future research directions	169
Bibliography	172
ANNEXES	188
ANNEX A - Transporter devices types. Description	189
ANNEX B - Order agent programming in case I	192
ANNEX C - Order agent programming in case II	193
ANNEX D - Order agent programming in case II	195

ANNEX E - Programming of the query node from the feeder	
entrance	. 197
ANNEX F - Programming of the exit agent	. 199
ANNEX G - Experimental parameters	. 200
ANNEX H - Experimental results	.242
ANNEX I - Curriculum Vitae	.286

List of Abbreviations

A AGV	Automated Guided Vehicle
ALB AS/RS	Assembly Line Ballancing Problem Automated Stock/Recieve System
В	
BTO	Build to Order
BTS	Build to Stock
С	
SP	Shortest Processing Time
EDD	Earliest Due Date
CPS	Cyber Physical Systems
CRM	Customer Relationship Management
Ε	
ECC	Electric Carrying Conveyor
ECU	Electronic Control Unit
EPC	Electric Pallet Conveyor
ERP	Enterprize Resource Planning
F	
FIFO	First in First out
FIPA	The Foundation for Intelligent Physical Agents
FJSP	Flexible Job Shop Scheduling Problem
G	
GSM	Global System for Mobile Communication
GUI	Graphical User Interface
М	
MES	Manufacturing Execution Systems
MILP	Mixed-Integer Linear Programming
MTO	Make to Order
MTS	Make to Stock
0	
OEM	Original Equipment Manufacturer
OLE	Object Linking and Embedding
OPC	OLE for Process Control

OPC UA	OLE for Process Control Unified Architecture
P PLM FCFS	Product Lifecycle Management First Come First Served
R CR RFID	Critical Ratio Radio Frequency Identification
S SCADA SCM SFFr HMS	Supervisory Control and Data Acquisition System Scupply Chain Management Sistem de Fabricație Fractal Holonic Manufacturing Systems
T TL TS U	Remaining working time for a work Remaining time until due
UBFr	Base fractal
W WIP	Work in Process

Keywords:

physical prioritization, flow shop, feeder, series production, transportation, transportation systems, transportation devices, customization, decentralization, simulation, intelligent agents, continuous production.

Introduction and literature review

Our world can be considered a system that has the intrinsic purpose to reach an equilibrium state, maintain the equilibrium state and evolve until another disequilibrium state appears.

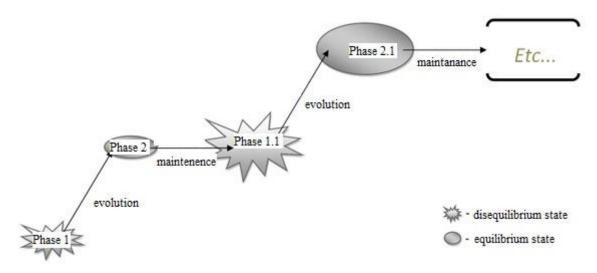


Figure 0.1 – Sequential representation of general systems evolution

The production environment has faced many important changes in the last years: switching from one economy with local perspective to one economy with global perspective and with markets that demand high quality products at low costs, extremely customizable and with short life span leading to a "mass customization" [PAU04]. This "mass customization" raises many challenges starting from the production planning level and continuing with the production process where, due to rigid systems involved that need programming and detailed sequencing of production, activities that use one important segment of the lead time, activities that are complex and difficult to implement and are very often relying on the decision of dedicated employees. These decisions are fully dependent on employee's experience and on his skills in finding the best solutions in the shortest time. This process is a not reliable one given the fact that it is prone to human error.

During the last years, people have sought solutions to these problems with high emphasis on: decentralization, smart product, production environment capable to integrate and manage the smart products evolution, taking advantage on high processing power provided by the IT industry.

Based on these facts, starting in 2012, Germany began the fourth industrial revolution called "Industrie 4.0", by exhibiting the first demo of this concept at the International Fair in Hannover. Industrie 4.0 aims to interconnect by using the Internet of objects, systems and environments that will be generically called

CPS (Cyber Physical Systems), leading to 2020 from intelligent objects (which are in trend at the present moment) to intelligent environments like the smart city concept. Another important feature of the new industrial revolution is changing of paradigm from a PC based world to a world based on multiple devices connected to multiple clouds, this new foreseen environment being generically called the Internet of Things.

Some of the main goals of this new industrial revolution are: intelligent entities, intelligent machines or CPS, augmented operator, unique identities, decentralization, communication, and autonomy.

At this moment, one challenge related to implementation of intelligent products is building of environments where these intelligent products can optimally evolve [FAR12].

The companies that implemented these standards will have to prove new benefits to the client in order to make their own products more attractive, given the fact that the products are almost at the same level of quality compared to competitor products, thus at company level being almost at the same level compared to other companies that implemented similar standards. Another important advantage against competition is, as previously mentioned, the time until product delivery. The faster the product can be delivered, the bigger the advantage against competition. It is very difficult for a company to decrease the product delivery time as long as the production capacity is not increased. As well, not all the clients in portfolio demand short delivery time for their products. Considering these aspects, de product delivery time can be decreased only for the products demanding short delivery time, assigning higher priority only for these products and by this avoiding the need for increasing production capacity.

The prioritization topic becomes more and more complex given the fact that the company products are very customizable. For instance, the German automotive company BMW has such a wide range of options that leads to a theoretical number of millions of possible constructive variants [MEY04]. This variety of models implies planning, activity that needs more than 50% of the lead time [TIM09].

Another actual challenge is finding solutions for efficient prioritization, optimal planning, programming and production sequencing, generation of manufacturing architectures that will allow prioritization at any moment without affecting the company efficiency (productivity, costs, times, etc.).

The issues described above are widely approached in the literature usually by using mathematical models. Some of these models can be detailed by using the following references: genetic algorithms [CAR11] [XIA10], parallel genetic

algorithms [FAN09], modified genetic algorithms [SUN10], optimization by using bio-geographical algorithms [HAB11], artificial algorithms of bees swarms [QUI11] [WAN11], taboo search algorithms (TS) [BRA93], particle swarm optimization (PSO) [GAO06], optimization based of ants colonies (ACO) [LI007], evolutionary algorithms [KAC02] [KAC021], different hybrid algorithms [NAS11] [XIA05] [ZHA09] [HON08] [LIJ10], etc.

At mathematical level, there are already described in the specialized literature some of the algorithms:

• Models based on linear programming with mixed variables (MILP) [CEM09];

• Models generated for specific purposes [YUN12]

For a wider range of mathematical models for FJSP, check Table 1 from Demir and Isleyen' work. [YUN12].

Even if a great amount of effort is invested in the generation of theoretical aspects of the issues related to production tasks planning simple or flexible, Demir and Isleyen point the fact [YUN12] that generation of mathematical programming of these models is not an efficient solution because of NP-complex structure of machine programming and on the fact that researchers should be aware of the relative efficiency of this programming models!

One dynamic production system that involves a time variable mixture of products, a variable waiting time and a variable production flow time will never reach a stable state [RUE06]. Issues like sending the process related information and WIP control in real time to the actual production process are present very often among production companies and are very difficult to solve by using algorithms; thus, the solutions to this issues are crucial for manufacturing processes of mixed models on today's production lines [LEI09].

In conclusion, the systems can be considered to be formed of equilibrium and non-quilibrium phases that can be sequentially described by moving from a non -equilibrium phase to one equilibrium phase by evolution and from one equilibrium phase to a non-equilibrium phase by gathering new information and the necessity of new methods.

In order to move from one non-equilibrium phase to one equilibrium phase it is necessary to use methods and tools. The smarter the tools and methods are, the quicker the equilibrium state is reached.

Today, we strive to reach an equilibrium state by creating products and services that revolve around one single entity: the consumer. The consumer's need have increased a lot so the trend is to switch from the mass production currently used to a mass customization production.

Mass customization raises a series of issues like: difficult production planning because of high complexity generated by the high number of differences between products, difficult optimization of production flow because of a high number of sub-parts needed to be produced, and the issues related to production management, issues generated by the first two aspects.

Today, a series of mathematical models were developed in order to manage this type of issues, but these models will not solve the above-mentioned production related issues because of the highest range of complexity specific to these issues and because of the impossibility to reach one equilibrium phase of these production lines.

Considering this aspects, our purpose in this work is to produce a thorough analysis of the elements that significantly influence the customized production: the types of production suitable for mass customization, the transport devices and systems currently used, the prioritization issues and

Following this analysis, our goal is to identify the transport devices and systems, as well as the prioritization methods that are suitable for mass customization and also to identify the methods that are insufficient exploited in order to reach this goal (smart products, CPS, autonomous entities, decentralization, etc.). The final goal will be to define a new method for mass customization, to describe it and to analyze its performance.

Ph.D Dissertation Objectives

Given the evolution of the systems together the with the evolution of manufacturing paradigms, arising at the same time with changing customer needs from standard products to highly customized products, the approach in this thesis meets several goals of the new industrial revolution.

Because the production trend is oriented to a "mass customization", the research field of this thesis focuses on prioritizing methods in flexible assembly systems with continuous flow used in medium and large series production.

Based on the analysis, synthesis, theoretical and practical training conducted throughout the dissertation, but also taking into account the previous experience in pattern-making and simulation of flexible manufacturing and assembly lines gained during the preparation of the dissertation, the main objectives of this thesis are:

- 1. Highlighting and summarizing the current state of the main elements of flexible manufacturing lines (shown in the previous chapter):
 - Highlighting and summarizing the current state of the flexible manufacturing lines typologies;
 - Highlighting and summarizing the current state of the conveying entities used on flexible manufacturing lines;
 - Highlighting and summarizing the current state of the systems and entities intelligence used in flexible manufacturing systems;
 - Highlighting and summarizing the current state of the prioritization methods on flexible manufacturing lines.
- 2. Analysis in terms of possible prioritizing configurations of the flexible manufacturing lines, typologies of conveying entities, of the system's intelligence and of participating entities.
- 3. Determination of the configurations of the flexible manufacturing lines, conveyors and intelligence necessary to create an environment suitable for middle and high flexible manufacturing serial priority oriented. Addressing flexible manufacturing lines oriented on prioritization of architectural point of view, to the detriment of mathematical methods.
- 4. Description of a new manufacturing concept oriented on prioritization. Establish rules that will govern the new manufacturing concept.
- 5. Modelling a conceptual manufacturing system able to handle stochastic commands like: time of entry into the system, number of features that need to be materialized on the product and priority.
- 6. Programming of the intelligent agents and entities to manage stochastic flows of components. Creating a manufacturing environment which would allow

enabling physical prioritization without affecting performance compared to a usually flexible system typology and even improve them.

7. Simulation of the components flows through the new conceptual system. Performance analysis of the new manufacturing conceptual system.

Research methods that we intend to use in order to achieve thee exposed objectives:

- The analogy with the nature of manufacturing systems for a practical material flow display;
- Modeling manufacturing systems in special modeling environments to display the configurations of the analysed manufacturing systems;
- Simulation of the manufacturing systems in special simulation environment to analyse the production performances of the presented system.
- Factorial experimentation on proposed and existing manufacturing lines to quantify performances

Feeder concept

The term "feeder" refers to the components supply manner of workstation. In this paper, the term "feeder" is used as the buffer power of supplying the workstations.

Principle

In a glass of mineral water can be seen as gas bubbles of a larger diameter advance the smaller diameter gas bubbles to reach the surface of the glass. Also, by throwing a large rock in the water can be observed as large bubbles appear immediately after throwing the stone at the surface, followed by an effervescent effect created by smaller bubbles. Considering this natural phenomenon we will created an analogy for the flow of components in manufacturing systems.

Next we will name the principle of operation of the new system **the principle of the gas bubbles**. [MAR14]

It is considered a liquid container in which gas bubbles are introduced systematically by the bottom part. These will reach the liquid surface, will remain in contact with the atmosphere for a period, after which they will break. It is considered that the larger diameter bubbles will reach the surface of the liquid before the smaller diameter bubbles when placed simultaneous because of their higher flotation. Each gas bubble will disappear from the system (it will break) after a certain time of exposure to the atmosphere, which may be different for each bubble at hand. It is assumed that after the disappearance of a bubble in the container, its place will be taken at the liquid surface by the bubble with the largest diameter in the area, before the smaller diameter ones due to its high flotation and higher motion speed. The container will not clutter to allow large bubbles to reach the surface without being blocked because of excessive density.

By analogy to the natural phenomenon stated above, we consider: the container as being the manufacturing system, the liquid as being the conveying system, the bubbles as being the components that need to be processed, the size of the bubbles as being the priority degree of the components, the surface (atmosphere) as being the manufacturing zone, the time of exposure of the bubbles to the atmosphere until their disappearance as being the processing time.

Architecture of the feeder manufacturing system

The feeder manufacturing system consists of: workstations placed on both sides of the transport system, query nodes, and a transport system with cyclical configuration . In the system there is only one main input and output, but there may be secondary outputs.

Figure 1 - Generalized principle of feeder manufacturing

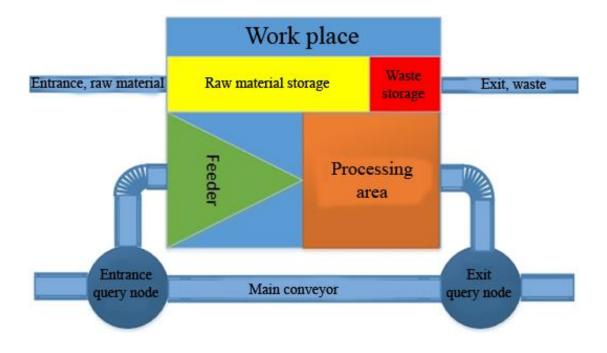


Figure 2 - Workplace structure in a manufacturing system with feeders

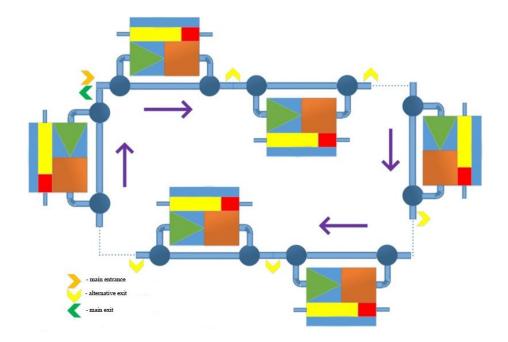


Figure 3 - Architecture of a manufacturing system with feeders

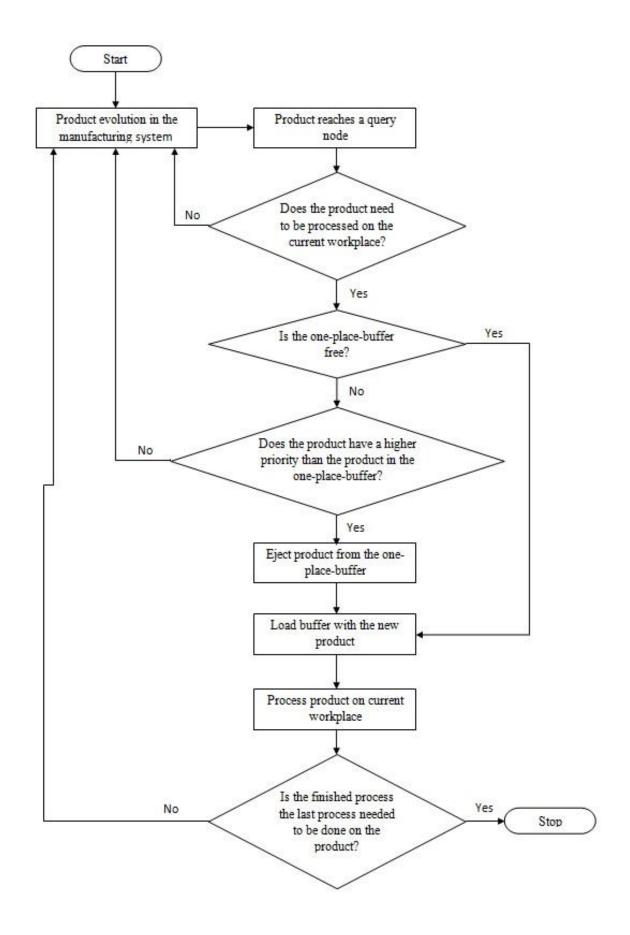
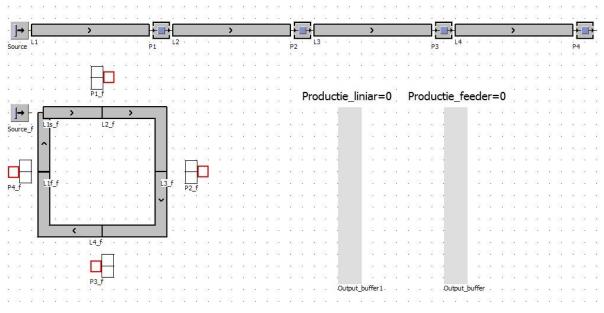



Figure 4 - Comunication in a feeder manufacturing system

Experimental models, results and interpretation

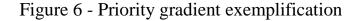
Figure 5 - Experimental models

Two experimental models were designed with the purpose to run simulations and test the model designed after the feeder concept performance: a linear production line model built according highest flexibility concepts used nowadays and a feeder production line. Both production lines have same physical parameters but the feeder line is configured after feeder concept design.

Table 1 - Parameters used for tes	sting
-----------------------------------	-------

Deremeter	Level				
Parameter	1	2	3	4	5
TP (processing time)	random	=	И	7	
PR (priorities)	random		K		
CR (characteristics of products)	random	1c	2c	3c	4c
		C1	C1, C2	C1, C2, C3	C1, C2, C3, C4
		C2	C1, C3	C1, C2, C4	
		C 3	C1, C4	C1, C3, C4	
		C 4	C2, C3	C2, C3, C4	
			C2, C4		-
			C3, C4		

Three parameters were used for testing:


- processing times of workplaces, with the following levels:
 - o random processing times between workplaces;

- equal processing times for all workplaces
- decreasing processing times from the first workplace towards the last;
- increasing processing times from the first workplace towards the last.
- Priorities of the sequence of products:
 - Random priorities for the products in the sequence that needs to be processed;
 - Increasing priorities from the first product towards the las product;
 - decreasing priorities from the first product towards the las product.
- Characteristics that every product needs to have processed every workplace in the system it is considered to be able to process only one specific characteristic:
 - Every product in the sequence can have random number and type of characteristics that need to be processed;
 - All products need to have processed one characteristic;
 - All products need to have processed twocharacteristics;
 - All products need to have processed three characteristics;
 - All products need to have processed four characteristics.

A factorial experiment was calculated and 60 experimental cases simulated on the experimental model presented in figure 5.

A priority gradient was defined according to the order of priorities of the products at the entrance in the feeder system and another gradient of priority was defined according the order of priorities of the same products at the exit from the feeder system.

We present the gradient graphics for first 3 experiments. The **blue gradient** represents the entrance sequence of priorities and the **red gradient** represents the exit sequence o priorities from the feeder system.

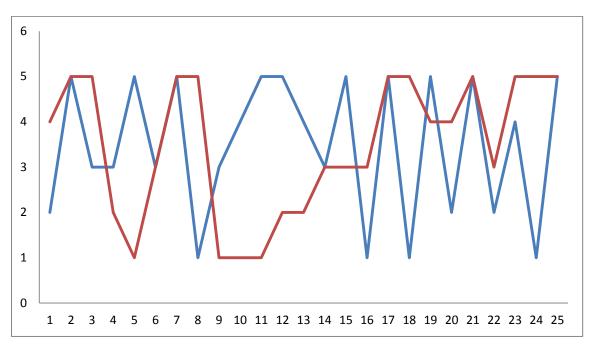


Figure 7 - Priority gradeint for experiment 1

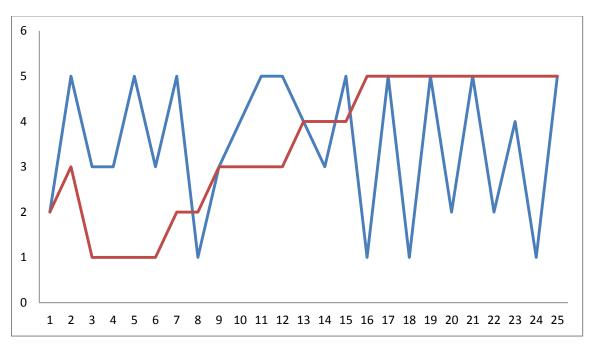
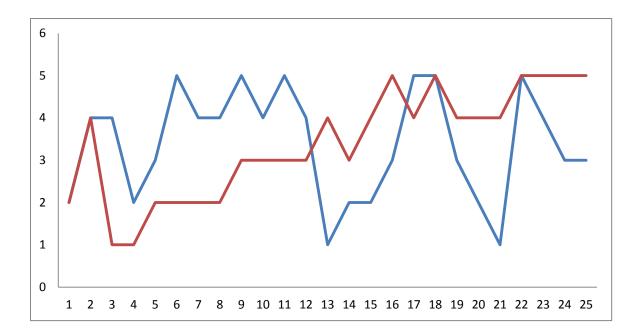
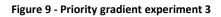




Figure 8 - Priority gradeint for experiment 2

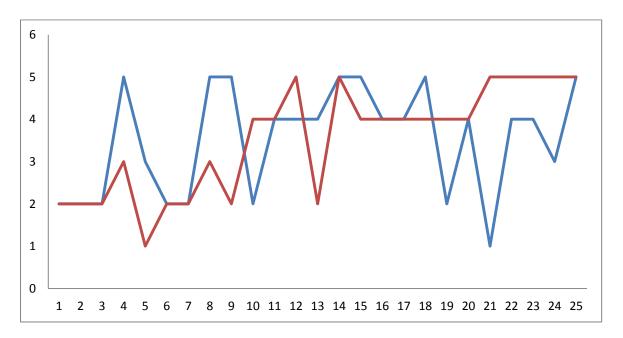


Figure 10 - Priority gradient experiment 4

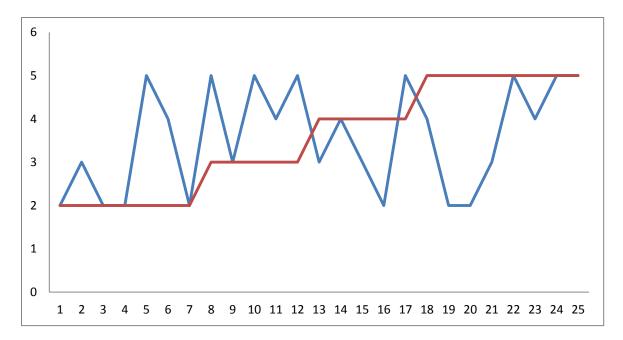
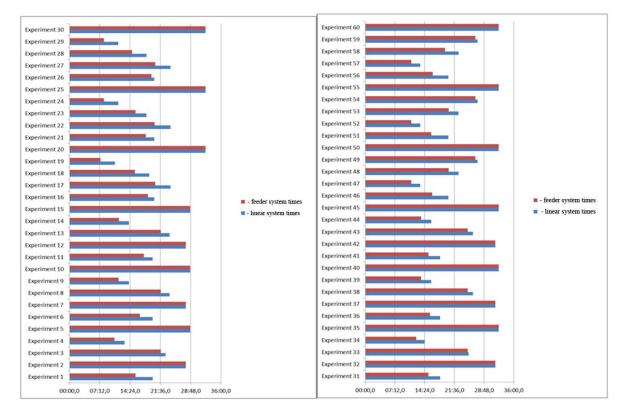
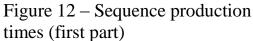
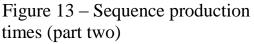





Figure 11 - Priority gradient experiment 5

To test the performance of the feeder production system we designed a factorial experiment based on a set of three parameters: the processing time of each workstation, priorities and characteristics of each component. These parameters are considered sequentially as follows: workstations sequence as it is found on the production line, in terms of processing time, the sequence of components in terms of priorities and characteristics, analysed at the entry and exit from the production line. After modeling and simulation of the feeder production system, the experimental results show that a clear prioritization is performed on the feeder manufacturing system, prioritization that can be seen on the gradient charts of priority showed in this section, charts showing an ascendant trend towards input sequence, a trend that means higher priority parts processing before lower priority parts or less significant.

In terms of working time, in Figure 12 and 13 it can be observed clearly that the feeder manufacturing system end the processing components sequence in all cases faster or at the same time as the manufacturing system commonly used today and simulated also for comparison in this paper. These results which show lower or equal times of manufacturing with the feeder system compared to usual manufacturing system, corroborated with prioritization of components which is made during this time by the feeder manufacturing system clearly show superior performance of the new concept from the point of view of both the prioritization and time of manufacture. The results clearly show a good gradient priority to products manufactured with feeder system and a manufacturing time smaller by 15% for the component sequence of feeder manufacturing system.

Thesis structure, original contributions and future research directions

Ph.D dissertation Structure

The paper includes 6 chapters, presented in 308 pages, 142 figures, 132 tables, 8 annexes, 181 references and is summarized below.

<u>Chapter I</u> presents aspects of customer satisfaction and the importance of understanding as to their precise needs. It is not enough but that just the needs to be understood precisely, it is also necessary that the needs to be translated accurately and in the finished product. A very important aspect in the manufacturing of a good is the time between placing the customer's order and receiving the product by the this. This time is defined as the *lead time* and can act upon by several methods. We approach two general mechanisms that may influence lead time:

- Operating mechanisms of the companies, as: ERP, MES, SCADA, SCM, CRM;
- The development mechanisms of the product, where we remind a current holistic philosophy for manufacturing has at its centre the product, and is also known as PLM philosophy.

Further research direction focuses on **the system and transport entities influences from the manufacturing systems**. The properties of the transportation systems are defined as being: flexibility, adaptability and agility, efficiency, in order to meet the market demands that passed in the recent years from a local economy to a global one, demanding parts that require high quality products at low costs, highly customizable and short life cycles, running practically from mass production to mass customization production [PAU04]. This type of decentralized mass production raises issues with both production planning and production level itself due to rigid systems that require extensive programming and sequencing of production, activities which occupy a large percentage of lead time, are complicated to apply and is often based on decisions of particular persons engaged in such activities, decisions concerning the employee's experience and ability to find the best solutions in a short time; This process is quite uncertain and is subject to human error.

In the recent years they're searching for solutions to these problems focusing on: decentralization, intelligent product, production environments able to integrate and manage the development of intelligent products, operation at the high processing capacity reached by the IT industry today. <u>Chapter II</u> presents aspects regarding mass production, flexible production lines, focusing on the production batch or production Job Shop and continuous production or production Flow Shop. It is highlighted the problem of Job shop scheduling systems, which is considered the highest degree of difficulty in computer science, which translates the problem in flow shop type production, but with the addition of the constraint access to working parts depending on conveyors routes.

Forward, we analyse the conveyors and conveying systems which these use. Because without goods there will be no object for carriers, treating the current state of conveyors and transport systems begins with the classification of the transported goods. After a short history, we analyse the conveyors and transport systems by the following criteria: conveyors consistency, the path and the type of action to the production site, the method of operation, type of action, the order of the conveyor, an than we present a number of commonly used conveyors for the production and storage process.

Further, the research is moving towards the direction of assembly line type flow shop thanks to the special problems which stand on these lines for the manufacture of customized products. In this section we analyse:

- The evolution of intensive industrialization since the first assembly line (Ford Motor Company 1908) and preliminary theories;
- Information technology and its impact on the production methods;
- Flow Shop Type assembly lines configuration;
- Balancing assembly lines;
- Types of assembly lines according to the manufactured product:
 - Lines for unique designs;
 - Lines for mix designs;
 - Lines for multiple designs;
- Control of the assembly lines;
 - Tactat;
 - Netactat sincron;
 - Netactat asincron;

The problem of manufacturing customized products is treated in detail in the next section, which describes:

- BTS (Build to Stock) and BTO (Build to Order) production approaches.
- BTO implementation difficulties.
- Virtual prioritization and its methods;
- Physical prioritization and its methods;

- Steps of fulfilling an order from its placement to delivery of the product to the customer;
- Decentralized manufacturing and it methods.

In concluding Chapter II we present a flexible manufacturing system based on intelligent agents developed by Daimler Chrysler, which deals with preproduction sequencing and prioritization to pre-production, and fulfils 99.7% of the theoretical optimum production (preforms / hour).

<u>Chapter III</u> presents the objectives of the phD thesis, summarized below:

- Defining a concept of priority manufacturing of products on the assembly lines;
- Defining a generalized manufacturing system capable of satisfying the defined concept;
- Defining the intelligence of the manufacturing system (agents);
- Defining the communication diagram underlying the rules of the manufacturing system;
- Testing the new concept and the defined rules by constructing a simulated model and its testing using factorial experiment.

<u>Chapter IV</u> presents the principle of gas bubble, principle which defines the priority manufacturing of products by analogy to the natural phenomenon of flow-through of the liquid by gas bubbles of different diameters, which influences the time at which the bubbles reach the surface, so bubbles of large diameters reach the surface before the smaller diameter bubbles due to their higher flotation. It presents the programmed manufacturing and sequencing and FIFO manufacturing using the gas bubbles model in order to be observed compared to our natural style, requiring further action (in the case of manufacturing by programming and sequencing) or does not have the desired results (for FIFO manufacturing).

It defines a feeder manufacturing system, whose principle is set out in the first step, through a gas bubble conceptual model. In the next phase, the general principle of the feeder system and feeder manufacturing system architecture comprises of:

- Transportation system;
- Jobs;
- Interrogation points at the entrance and exit of the workstation;
- feeder.

In presenting the transport system an analysis of the arrangement of workstations in series or in parallel on the production line is made, and also an analysis that considers the mileage of parts where exists alternative outputs from the system after each workstation .

The following stages describe the process of the production system running the feeder and the communication diagrams that define the rules of the new manufacturing system.

<u>Chapter V</u> presents the experimental analysis of the feeder manufacturing system. Are presented the used experimental parameters and are defined two experimental systems:

- An experimental system build based n the actual functioning rules of the continuous flexible systems, respectively: linear system, netactat, out of step;
- A feeder system with exactly the same parameter as the liner system but with the following differences: each workstation has a feeder and the transportation system is cyclic.

The factorial experiment is defined as the range of 60 experiments in order to cover all possible situations depending on the finite experimental parameters.

The results clearly show a good gradient priority to products manufactured with feeder system and a manufacturing time smaller by 15% for the component sequence of feeder manufacturing system.

Original contributions and future research directions

Theoretical researches on the study and identification of existing problems in the following fields of interest:

- Functioning mechanisms of the companies (ERP, MES, SCADA, SCM, CRM);
- Control mechanisms of the companies (PLM process and its instruments);
- Flexible production lines;
- Continuous and discontinuous manufacturing;
- Conveyors ans transportation systems;
- The assembly problem on Flow Shop manufacturing lines.
- Balancing assembly lines;
- Manufacturing of personalized products in current context;
- Production 2000+ production system analysis.

Original, theoretical and applicative contributions:

- Classification of transportation systems based on the type of action of the conveyor;
- Classification of conveyors:
 - By order;
 - By action area;
- Generalized models of the flow shop configuration lines:
 - Linear;
 - Circular;
 - Circular-mix;
 - Linear-selective;
- General diagonal model of the conveyor systems.
- Calculation of distances to be made by the parts of the production line if:
 - The layout of workstations is in series;
 - The layout of workstations is in parallel;
 - Components emerge from alternative output from the system;
- Defining the principle of operation of the feeder production system in analogy with nature, on the principle of gas bubbles;
- Defining the generalized manufacturing principle of feeder system;
- Defining the generalized architecture of the feeder manufacturing system;
- Defining logical schemes operating hubs query input and output;
- Defining the structure and operation of the feeder;
- Defining the communication diagram in the feeder manufacturing system;
- Defining critical case for the productivity of the feeder manufacturing system;
- Develop simulations to determine the performance of the feeder manufacturing system:
 - Experimental study and description of the linear manufacturing system and of the feeder manufacturing system.
 - Experimental modelling of the linear manufacturing system and of the feeder manufacturing system.
 - Analysis of the representative parameters and experiments design;
 - Design of simulation;
 - Integration of representative parameters into the simulation and conducting the experiments;
 - Centralize and analyse the results.
 - Design a factorial experiment to determine the performance of the feeder manufacturing system.
 - Extract and analyse the results.

Future research directions:

- Analysing the feeder manufacturing system using alternative outputs of the system.
- Analysing the feeder manufacturing system using alternative cycle in the system.
- Using mixed models with features of arrangement type not only of combinatorial type.

Selective Bibliography

[BEA00]	Beach R, Muhlemann AP, Price DHR, Paterson A, Sharp JA (2000) A review of manufacturing flexibility. Eur J Oper Res 122:41-57
[BRA93]	Brandimarte P (1993) Routing and scheduling in flexible job shop by tabu search. Ann Oper Res 22: 158-183.
[BRI11]	Paul Dan Brîndaşu, Rareş Lucian Marin , Livia Dana Beju – STUDY ON FIXING THE INSERTS AT BORING HEADS, The 5th International Conference on Manufacturing Science and Education, (2011), available at: http://conferences.ulbsibiu.ro/mse/MSE-2011/index.htm
[BUS01]	Bussman S., Schild K. – An Agent-Based Approach to the Control of Flexible Production Systems, IEEE (0-7803-7241- 7/01), 2001
[CAR11]	Carman K. M. Lee, Danping Lin, William Ho, Zhang Wu – Design of a genetic algorithm for bi-objective flow shop scheduling problems with re-entrant jobs, Springer-Verlag London Limited 2011.
[CEM09]	Cemal Özgüven, Lale Özbakir, Yasemin Yavuz – Mathematical models for job-shop scheduling problems with routing and process plan flexibility, Applied Mathematical Modelling 34, 1539-1548, Elsevier, 2009.
[CHE03]	Chen J, Chen FF (2003) Performance modelling and evaluation of dynamic tool allocation in flexible manufacturing systems using coloured Petri nets: An object-oriented approach. Int J Adv Manuf Technol 21 (2): 98-109.
[FAN09]	Fantahun M. Defersha, Mingyuan Chen – A parallel genetic algorith for flexible job-shop scheduling problem with sequence dependent setups, Int J Adv Manuf Tehnol, Springer-Verlag London Limited 2009.
[FAR12]	Duncan McFarlane – Product Intelligence: Theory and Practice, INCOM 2012, KT-9 – KT-14.
[GAO06]	Gao L, Peng CY, Zhou C, Li PG (2006) Solving flexible job shop scheduling problem using general particle swarm optimization. In: Proceedings of the 36th CIE Conference on Computers & Industrial Engineering, Taipei, China, June 20-23, 2006, pp. 3018-3027.
[HAB11]	Sayed Habib A. Rahmati, M. Zandieh – A new biogeography- based optimization (BBO) algorithm for the flexible job shop scheduling problem, Int J Adv Manuf Technol, Springer-Verlag London Limited 2011.
[HON08]	Ho NB, Tay JC – Solving multiple-objective flexible job shop

[HUE11] [KAC02]	problems by evolution and local search. IEEE T Syst Man Cy C, Part C 38(5): 674-685, 2008. Michael Huelsmann, Anne Schwientek, Benjamin Korsmeier, Linda Austerschulte – Creating Customer Value in Logistics: Contributions and Limitations of Autonomous Cooperation- Based Technologies, from the book "Autonomous Cooperation and Control in Logistics. Contributions and Limitations – Theoretical and Practical Perspectives" by Michael Huelsmann, Bernd Scholz-Reiter and Katja Windt, Springer-Verlag Berlin Heidelberg 2011. Kacem I, Hammadi S, Borne P (2002) Pareto-optimally approach
[]	for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Math Comput Simul 60: 245-276.
[KAC021]	Kacem I, Hammadi S, Borne P (2002) Approach by localization and multi-objective evolutionary optimization for flexible job- shop scheduling problems. IEEE T Syst Man Cy C, Part C 32(1): 408-419.
[KWA03]	Kwangyeol Ryu, Mooyoung Jung – Agent-based fractal architecture and modelling for developing distributed manufacturing systems, International Journal of Production Research, Vol. 41, Taylor & Francis 2003.
[LEI09]	Lei Yang, Xiaopeng Zahng, Mingyue Jiang – An optimal kanban system in a multi-stage, mixe-model assembly line, Systems Engineering Society of China & Springer-Verlag 2009.
[LIJ10]	Li JQ, Pan QK, Liang YC – An effective hybrid tabu search algorithm for multi-objective flexible job shop scheduling problems. Comput Int Eng 59(4): 647-662, 2010.
[LIO07]	Liouane N, Saad I, Hammadi S, Borne P (2007) Ant systems & local search optimization for flexible job-shop scheduling production.
[MAR10]	Rareş Lucian Marin – EXTENSION OF THE UTILITY OF TECNOMATIX PLANT SIMULATION SOFTWARE THROUGH THE SIMULATION OF THE MORPHOLOGIC CREATIVE METHOD, The Knowledge-Based Organization - The 16th International Conference, (2010), available at: http://www.armyacademy.ro/english/kbo.html
[MAR12]	Rareş Lucian Marin, Daniela Căruțașu - ASSEMBLY AND INSTALLATION PROCESS OF TANK TRACKS. ABSTRACTION, ANALYSIS BASIS AND AUTOMATION, International Journal - IJMMT ISSN 2067-3604, Vol. IV, No. 1, (2012), available at: http://www.modtech.tuiasi.ro/vol4no12012.php

[MAR14]	Rareș Lucian Marin, Paul Dan Brîndaşu – A NATURAL
	APPROACH TOWARDS MIXED-MODEL PHYSICAL
	PRIORITIZATION, Academic Journal of Manufacturing
	Engineering, Vol. 12, Issue 4, ISSN: 1583-7904 (2014)
[MEY04]	Meyr H. – Supply chain planing in the German automotive
	industry. OR Spectrum 26, 447-470, 2004.
[NAS11]	Nasr Al-Hinai, T. Y. ElMekkawy – An efficient hybridized
	genetic algorithm architecture for the flexible job shop scheduling
	problem, Flex Serv Manuf J, Springer Science+Business Media,
	LLC 2011.
[NYH09]	Nyhuis P, Muenzberg B, Kennemann M (2009) Configuration
	and regulation of PPC. Prod Eng Res Dev (WGP) 3:287-294
[PAO05]	Massimo Paolucci, Roberto Sacile – Agent-Based Manufacturing
	and Control Systems. New Agile Manufacturing Solutions for
	Achieving Peak Performance, CRC Press LLC 2005.
[PAU04]	Paulo Jorge Pinto Leitao – An Agile and Adaptive Holonic
	Architecture for Manufacturing Control, Porto, January 2004
[PIR10]	Bogdan Pîrvu, Ioan Bondrea, Carmen Simion, Rareş Lucian
	Marin – MODELLING AND CONTROL OF AN
	AUTOMATED MODULE USING DISCRETE EVENT
	SIMULATION AND OBJECT-BASED MODELLING,
	Academic Journal of Manufacturing Engineering, Vol. 8, Issue 2,
	(2010), available at:
	http://www.eng.upt.ro/auif/journal_vol_8_2010_no_2.html
[QUI11]	Jun-Quing Li, Quan-Ke Pan, Kai-Zhou Gao – Pareto-based
	discrete artificial bee colony algorithm for multi-objective
	flexible jop-shop scheduling problems, Int J Adv Manuf Technol,
	Springer-Verlag London Limited 2011.
[RUE06]	Ruey-Shan Guo, David M. Chiang, Fan-Yun Pai – A WIP-based
	exception-management model for integrated circuit back-end
	production processes, Springer-Verlag London Limited 2006.
[SUN10]	Wei Sun, Ying Pan, Xiaohong Lu, Qinyi Ma – Research on
	flexible job-shop scheduling problem based on a modified genetic
	algorithm, Journal of Mechanical Science and Technology,
	Springer 2010.
[TIM09]	Timothy J. Sturgeon, Olga Memedovic, Johannes Van
	Biesebroeck, Gary Gereffi – Globalisation of the automotive
	industry: main features and trends, Int. J. Technological Learning,
	Innovation and Development, Vol. 2, Nos. 1/2, 2009.
[WAN11]	Ling Wang, Gang Zhou, Ye Xu, Shengyao Wang, Min Liu – An
-	effective artifficial bee colony algorithm for the flexible job-shop
	scheduling problem, Int J Adv Manuf Technol, Springer-Verlag
	London Limited 2011.

[XIA05]	Xia WJ, Wu ZM (2005) An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput Ind Eng 48(2): 409-425.
[XIA10]	Xiaojuan Wang, Liang Gao, Chaoyong Zhang, Xinyu Shao – A multi-objective genetic algorithm based on immune and entropy
	principle for flexible job-shop scheduling problem, Int J Adv
	Manuf Techol, Springer-Verlag London Limited 2010.
[YUN12]	Yunus Demir, S. Kürşat Işleyen – Evaluation of mathematical
	models for flexible job-shop scheduling problems, Appl. Math.
	Modell, 2012. (documentul poate fi găsit la următoarea adresă:
	http://dx.doi.org/10.1016/j.apm.2012.03.020)
[ZAE10]	Zaeh MF, Reinhart G, Ostgathe M, Geiger F, Lau C (2010) A
	holistic approach for the cognitive control of production systems.
	Adv Eng Inform 24:300-207
[ZHA09]	Zhang GH, Shao XY, Li PG, Gao L – An effective hybrid swarm
	optimization algorithm for multi-objective flexible job-shop
	scheduling problem. Comput Ind Eng 56(4): 1309-1318, 2009.
[ZUE08]	D. Zuehlke – Förder und Lagertechnik in der automatisierten
	Produktion, 2008

Curriculum vitae Europass

Personal information Name / Surname Marin Rareş Lucian Address 550201 9 Mai Str. No. 11, Sibiu, Romania Telephone Home: +40269220986 Mobile: +40741272277 E-mail officialmrl@googlemail.com Nationality Romanian Birth date 20.11.1984 **Professional experience** Dates March 2013 - present Occupation or position held Mechanical Design Engineer Management of mechanical activities Main activities and responsibilities Name and address of the Continental Automotive Systems S.R.L employer Type of business or sector Research and development March 2012 - August 2012 Dates Occupation or position held Invited researcher Main activities and Design and optimization of devices needed for the demonstrators used to proof new responsibilities concepts Name and address of the DFKI GmbH (German Research Center for Artificial Intelligence), Kaiserslautern employer Type of business or sector Research August 2009 - November 2009 Dates Occupation or position held Design engineer Main activities and Migrate the CATIA V4 model to CATIA V5, development and optimization responsibilities Name and address of the Kromberg & Schubert GmbH, Sibiu employer Research and development Type of business or sector February 2009 - June 2009 Dates

 Occupation or position held
 Working student

 Main activities and responsibilities
 Production line simulation development and control of the production line through the simulation

 Name and address of the employer
 DFKI GmbH (German Research Center for Artificial Intelligence), Kaiserslautern

 Type of business or sector
 Research

Dates	July 2008 – January 2009							
Occupation or position held	Design technician							
Main activities and responsibilities	Optimization and development of CATIA V4 harness model							
Name and address of the employer	Kromberg & Schubert GmbH, Sibiu							
Type of business or sector	Research and development							
Education and training								
Dates	November 2009 – present							
Title of qualification awarded	Doctoral study							
Principal subjects / occupational skills covered	 Material flow Manufacturing architectures Manufacturing philosophies 2D and 3D design 							
Name and type of organization providing education and training	"Lucian Blaga" University of Sibiu / "Hermann Oberth" Faculty of Engineering							
Dates	February 2009 – June 2009							
Title of qualification awarded	Experience exchange / Development of the Diploma Thesis "The							
	simulation in Plant Simulation of the SmartFactory ^{KL} Mobile Module and							
	setting up a connection through an OPC server"							
Principal subjects / occupational skills covered	 Montage and micro montage Storage and transportation techniques Simulation Networking PLC programming 							
Name and type of organization providing education and training	Technical University of Kaiserslautern, Germany							
Dates	2004 – 2009							
Title of qualification awarded	Diplomat engineer							
Principal subjects / occupational skills covered	 Descriptive geometry and technical drawing 2D and 3D design with the help of specialized software Devices Machine organs Quality Manufacturing philosophies Machines and tools 							
Name and type of organization providing education and training	"Lucian Blaga" University of Sibiu / "Hermann Oberth" Faculty of Engineering							
Dates	2000 – 2004							
Title of qualification awarded	Diploma for Professional Certification, Diploma for High School Graduation, Baccalaureate Diploma							

Principal subjects / occupational skills covered Name and type of organization	 Romanian Language and Literature English Mathematics Informatics "Onisifor Ghibu" Theoretical High School of Sibiu
providing education and training	
Additional certifications	
Dates	July 2011
Title of qualification awarded	Tecnomatix certificate
Module	 Introduction in digital manufacturing Robcad Plant Simulation
Name and type of organization providing education and training	Siemens Industry Software / Lockheed Martin
Dates	July 2011
Title of qualification awarded	Teamcenter certificate
Module	- Document and Knowledge Management
Name and type of organization providing education and training	Siemens Industry Software / Lockheed Martin
Dates	July 2011
Title of qualification awarded	Introduction to NX CAE Capabilities certificate
Module	- NX Nastran
Name and type of organization providing education and training	Siemens Industry Software / Lockheed Martin
Dates	December 2010
Title of qualification awarded	German language course certificate for A1.1. level (very good)
Name and type of organization providing education and training	German Cultural Center, Sibiu
Dates	March 2010
Title of qualification awarded	German language course certificate for A1.2. level (very good)
Name and type of organization providing education and training	German Cultural Center, Sibiu
Dates	May 2008
Title of qualification awarded	Tecnomatix Plant Simulation training diploma
Name and type of organization providing education and training	Siemens PLM / ADA Computers
Dates	December 2007
Title of qualification awarded	Plant Simulation Basic Training diploma
Name and type of organization providing education and training	Siemens

Personal skills and competences												
Mother tongue	Romanian											
Other languages												
Self-assessment	Understanding				Speaking				Writing			
European level (*)	Listening		Reading		Spoken interaction		Spoken production					
English	C2	Experienced user	C1	Experienced user	B2	Independent user	B2	Independent user	B2	Independent user		
German	A1	Elementary user	A1	Elementary user	A1	Elementary user	A1	Elementary user	A1	Elementary user		
	(*)Common European Framework of Reference for Languages											
Social skills and competences	Vice president on social problems within the student organization SOLIDUS of the Faculty of Engineering, Sibiu (2008 – 2009)											
Additional information	Faculty of Engineering, Šibiu (2008 – 2009) References Dr. Eng. Jochen Schlick – Deputy Head of Department DFKI GmbH, Kaiserslautern, Germany Jochen.Schlick@dfki.de Publications "Assembly and Installation Process of Tank Tracks. Abstraction, Analysis Basis and Automation", ModTech International Journal of Modern Manufacturing Technologies, ISSN 2067-3604, Vol. IV, No. 1 / 2012 "Digital Factory: Just Another Concept or a Future Industrial Reality?", ModTech Proceedings of 15 th International Conference, ISSN 2069-6736, 2011 "Study on Fixing the Inserts at Boring Heads", MSE Proceedings of 5 th International Conference on Manufacturing Science and Education, Sibiu 2011 "Modelling and Control of an Automated Module Using Discrete Event Simulation and Object-Based Modelling", Academic Journal of Manufacturing Engineering, Vol. 8, Issue 2/2010 "Extension of the Utility of Tecnomatix Plant Simulation Software Through the Simulation of the Morphologic Creative Method", The Knowledge Based Organization, Proceedings of the 16 th International Conference, Sibiu 2010											
	"A natural approach towards mixed-model physical prioritization", Academic Journa of Manufacturing Engineering, Vol. 12, Issue 4, ISSN: 1583-7904 (2014)											