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Rezumat 
 
În zilele noastre, tendinţele tehnologice au determinat arhitecturile de calculatoare să 
ajungă la aşa-numitul power wall. Datorită continuei micşorări a tranzistorilor, densitatea 
de putere pe centimetru pătrat a ajuns la limita superioară. Din această cauză, arhitecţii de 
calculatoare au hotărât să înceteze îmbunătăţirea performanţei design-urilor acestora prin 
intermediul scalării frecvenţei. În loc de aceasta, mai multe procesoare sunt plasate pe 
acelaşi chip. Sistemele multicore şi manycore oferă o performanţă crescută faţă de 
arhitecturile cu un singur core (nucleu de procesare), prin efectuarea de procesare 
paralelă. De asemenea, arhitecturile de calculator specifice pentru aplicaţii îmbunătăţesc 
performanţa prin utilizarea de procesoare eterogene în locul celor omogene. Evident, 
astfel de arhitecturi trebuie să fie interconectate pentru a comunica. Potrivit viziunii 
HiPEAC [1], în momentul de faţă comunicarea defineşte performanţa. Reţelele de 
interconectare au o foarte mare importanţă. Cele bazate pe magistrală de transmisie (bus) 
nu sunt potrivite pentru sistemele multicore şi manycore pentru că ele nu scalează [2]. 

După anul 2000, reţele interconectate pe chip, numite arhitecturi Network-on-
Chip (NoC), au fost propuse drept o alternativă fezabilă pentru reţelele bus. Reţelele NoC 
au avantaje importante cum ar fi modularitatea şi scalabilitatea, dar sunt și extrem de 
limitate în resurse. Ca urmare, există multe probleme de cercetare în domeniul NoC [3]. 

Maparea aplicaţiilor pe arhitecturi de tipul Network-on-Chip este una dintre cele 
mai oneroase probleme (NP completă), în această zonă de cercetare. De vreme ce o 
abordare exhaustivă este nefezabilă, pentru această problemă sunt folosiţi algoritmi 
euristici. Scopul acestei teze este să evalueze şi să optimizeze algoritmi (mono-obiectiv şi 
multi-obiectiv) pentru maparea aplicaţiilor pe arhitecturi de tipul Network-on-Chip. 

Primul obiectiv al acestei teze este să se prezinte stadiul actual al algoritmilor 
proiectați pentru problema mapării aplicaţiilor pe arhitecturi Network-on-Chip. Apoi, 
propunem de asemenea o taxonomie pentru aceşti algoritmi. 

Zona de cercetare a arhitecturilor Network-on-Chip este relativ nouă. Ca atare, 
unelte puternice şi mature sunt încă aşteptate. Din câte ştim, la această dată nu există un 
cadru unitar open source (gratuit) pentru evaluarea şi optimizarea algoritmilor pentru 
maparea aplicaţiilor pe arhitecturi de tipul Network-on-Chip. Cel de al doilea obiectiv al 
nostru este să proiectăm un cadru comun pentru evaluarea şi optimizarea algoritmilor 
pentru diferite mapări pe arhitecturi multiple de tipul Network-on-Chip. 

Al treilea obiectiv este să optimizăm şi să adaptăm un algoritm de tipul Simulated 
Annealing pentru maparea aplicaţiilor pe NoCuri, folosind cunoștințe de domeniu. 
 Al patrulea obiectiv constă în evaluarea şi optimizarea (folosind cunoștințe de 
domeniu) algoritmilor evolutivi pentru maparea multi-obiectiv a aplicaţiilor pe NoCuri. 
 În cele din urmă, ne propunem să efectuăm o explorare automată, ghidată de 
aplicație, a spațiului arhitectural pentru Sisteme on Chip. Aceasta implică sisteme 
specifice aplicaţiilor, cu procesoare eterogene, utilizând o reţea NoC parametrizabilă. 
 Această teză aduce contribuţii originale în optimizarea sistemelor de tipul 
Network-on-Chip. Contribuim cu unelte pentru simulare şi benchmarking. Optimizăm 
algoritmi pentru problema mapării aplicaţiilor pe arhitecturi NoC. De asemenea, 
propunem o metodă de explorare automată, ghidată de aplicație, a spațiului arhitectural 
pentru Sisteme on Chip. 
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1 Introduction 
 
In the current days, the technology trends determined computer architectures to reach the 
so called power wall. Due to continuously shrinking transistors, the power density per 
square centimeter reached the upper limit. Because of this, computer architects decided to 
stop improving the performance of their designs by means of frequency scaling. Rather 
than this, more processors are placed on the same chip. Multicore and manycore systems 
provide better performance than single core architectures, by performing parallel 
processing. Also, application specific computer architectures yield increased performance 
by employing heterogeneous processors instead of homogenous processors. Obviously, 
such architectures must be interconnected in order to communicate. According to 
HiPEAC’s vision [1], nowadays communication defines performance. Interconnection 
networks are of high importance. Traditional bus-based networks are not suitable for 
multicores and manycores, because they do not scale [2]. 
 After year 2000 on chip interconnection networks, called Network-on-Chip (NoC) 
architectures have been proposed as a feasible alternative to bus networks. NoCs have 
important advantages like modularity and scalability but, they are also extremely resource 
limited. As such, there are many outstanding research problems in the NoC field [3]. 
 Network-on-Chip application mapping is one of the most onerous, NP-hard, 
problems in this area of research. Since an exhaustive approach is infeasible, heuristic 
algorithms are used to address this problem. The scope of this thesis is to evaluate and 
optimize Network-on-Chip application mapping algorithms (using single-objective and 
multi-objective approaches). 
 The first objective of this thesis is to realize a state of the art regarding the 
algorithms designed for the Network-on-Chip application mapping problem. Then we 
also propose a taxonomy for these algorithms. 
 The Network-on-Chip research field is relatively new. Therefore powerful and 
mature tools are still expected. To the best of our knowledge, there is not currently an 
open source unified framework for the evaluation and optimization of Network-on-Chip 
application mapping algorithms. Therefore, our second objective is to design a 
framework that uses a common frame for evaluating and optimizing different state of the 
art mapping algorithms on multiple NoC architectures. 
 The third objective of this work is to adapt and optimize a general Simulated 
Annealing technique, for NoC application mapping, using domain-knowledge. 
 Our forth objective is to evaluate and optimize (using domain-knowledge) 
evolutionary algorithms, for Network-on-Chip application mapping, through a multi-
objective approach. 
 Finally, we aim to perform an application driven automatic design space 
exploration of System-on-Chip designs. This involves entire application specific systems, 
with heterogeneous processors, using a NoC as interconnection. 
 This thesis brings original contributions in the Network-on-Chip research field. 
We contribute with tools for simulating and benchmarking NoC designs. We optimize 
algorithms for the NoC application mapping problem. We also propose an application 
driven automatic design space exploration method for System-on-Chip architectures. 
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2 Network-on-Chip Architectures 
 
Since the invention of the integrated circuit in 1958, Moore’s law [4] describes a trend in 
Computer Engineering that is still nowadays. For more than half a century, the number of 
transistors that can be placed onto a single chip doubles approximately every two years 
(initially it was one year, than Moore readapted its law) [5]. In the early beginnings, a 
computer system occupied an entire room. As technology evolved, in the 70s the Large 
Scale Integration (LSI) era began and the computers were rack-level systems. In the 80s, 
Very Large Scale Integration (VLSI) era began. This meant a system can be placed on a 
single board. Ten years later, in the 90s, we went to chip-level systems (ULSI – Ultra 
Large Scale Integration). Nowadays, billion transistors can be integrated on a single die. 
A chip is an entire system and so, the term System-on-Chip (SoC) was coined. Systems-
on-Chip make use of parallel processing at all levels: Instruction Level Parallelism (ILP), 
Memory Level Parallelism (MLP) and Thread Level Parallelism (TLP) [6], [7], [8], [9]. 
We researched these levels of parallelism previously by focusing on branch prediction 
[10], [11], [12] and multicore architectures [13], [14]. SoCs are feasible for a wide range 
of applications. However, they determine the architects to focus on the complex aspects 
of the communication architecture. 

The continuously growing number of transistors per chip leads to a bigger and 
bigger gap between logic gate delays and wire delays [15]. As compared with the gate 
delays, the global interconnection wires used by a typical bus interconnection network 
determine significantly higher delays. 

Systems-on-Chip also incur problems related to complexity, design flexibility and 
productivity and system synchronization. Achieving global synchronization is getting 
harder and harder as technology advances and chip speed increases. 
Currently, computer architects face with the difficult problem called Power Wall. The 
Power Wall is what determined the appearance of multicore and manycore architectures 
[16]. Parallel programming is needed to exploit multicores. Obviously, such architectures 
require scalable interconnection networks. It is well-known that the bus is not a scalable 
interconnection network [2]. 
 The gap between on-chip and off-chip communication is increasing. On-chip, we 
have greater bandwidth and shorter latencies but, the power budget is smaller. Besides 
scalability, on-chip communication also means flexibility, simplicity and efficiency. 
Flexibility is achieved by no longer using application-specific wiring (like buses do). 
Simplicity refers to modular, structured and regular design. Efficiency means the 
interconnection’s ability to share global wires between different communication flows. 
Communication is a performance bottleneck. Because of this, the design shifts from a 
processing-centric to a communication-centric approach. 

Simply stated, a Network-on-Chip (NoC) is a communication network that is 
used on a single chip. A Network-on-Chip consists of a number of interconnected 
heterogeneous devices (e.g. general or special purpose  processors,  embedded memories,  
application  specific components,  mixed-signal  I/O  cores)  where  communication  is 
achieved  by  sending  packets  over  a  scalable  interconnection network. No global 
wiring is used by a NoC. Wiring resources are shared by the communicating devices. The 
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idea appeared in the 90s but it started to be researched only from year 2000. Some of the 
first papers introducing the NoC concept are [17], [18], [19], [20], [21], [22] and [23]. 

The Network-on-Chip research field is relatively new and of high importance. In 
HiPEAC’s vision [24], nowadays communication defines performance. Communication 
is essential at three levels: (1) between a processor and its memory, (2) between a 
multicore’s different processors and (3) between processing systems and input/output 
devices. At the processor – memory level, the impact of communication on performance 
is basically controlled through cache hierarchies. At the other two levels, it is the role of 
the interconnection network to deal with the communication cost so that performance is 
less affected. More precisely, more and more processors are integrated on the same chip. 
Since power defines performance, multicores are now the solution for achieving higher 
performance. In this context, traditional buses, which allow the processors to 
communicate, no longer suffice. Networks-on-Chip provide the scalability that buses 
lack. Therefore, NoCs will have an increasing importance in the following years. The 
growing interest in this area of research is stressed out in HiPEAC’s vision [24]: 
interconnects is one of the clusters on which HiPEAC’s roadmap is built. 

A component-based hardware design methodology is envisioned in the future 
[24]. This means that systems will be built from standard reusable components like 
memories, cores and interconnection networks. This design technique applies however at 
multiple levels. The level of abstraction increases progressively. Basic blocks (gates, 
registers, ALUs etc.) make components (processors, NoCs etc.). Components are then 
used to create different kinds of chips (CPUs, GPUs and so on), which in turn are used to 
obtain systems that also are interconnected, leading to systems of systems. 

Obviously, the importance of interconnection networks increases as the number of 
communicating components raises. For intra-chip communication, the NoC is the 
solution and this is due to at least one factor: scalability. As the number of cores 
increases, the impact of memory bandwidth and memory latency becomes more and more 
stringent. Networks-on-Chip help at controlling the problems of memory bandwidth and 
latency. However, NoCs have a lot of issues that need solving. For example, they still 
require a lot of power and occupy large areas of the chip. 
 More precisely, research in the field of interconnection networks is required by all 
of HiPEAC’s current research objectives: Design Space Exploration (DSE), concurrent 
programming models and auto-parallelization, design of optimized components, self-
adaptive systems and virtualization. 
 Performing Design Space Exploration (DSE) for entire systems is currently a 
challenge. Unified DSE frameworks, that include the interconnection networks, are 
estimated to be available only between years 2016 and 2020 [24]. HiPEAC Consortium 
also estimates that the design space of interconnects will be feasible for exploration only 
around the year 2015. Only then, network traffic models, benchmarks and realistic 
performance/power models will be available for on-chip interconnection networks. 
 Developing concurrent programming models requires network interface 
mechanisms which efficiently support the cache coherence protocols and the 
communication between processors. 

Electronic Design Automation (EDA) refers to a set of methods and tools that help 
at improving the system’s design efficiency. EDA includes (among others) 
hardware/software modeling and partitioning and mapping applications to Multi-
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Processor System-on-Chip (MPSoC) architectures (related to this is the mapping problem 
for Network-on-Chip architectures). EDA has several challenges related to 
interconnection networks: 

- full system simulation, including the interconnections; 
- designing application-specific networks; 
- designing reusable interconnection modules through interface standards. 
Creating interconnection network architectures which reduce power, latency and 

integration area is a challenge of designing optimized components. The interconnection 
network may also be optimized by using dynamic power management techniques. 
Another goal is to design on-chip memory hierarchies. 

A challenge of self-adapting systems is to design fault tolerant network 
architectures and protocols. The network traffic may also be monitored and controlled. 
Such data may be used by the run time system for self-adaptation. 

Network interconnection is important for virtualization as well, from the point of 
view of system security and quality of service. The network may be physically or 
logically partitioned. A research challenge is to identify how network topologies and 
routing algorithms can help at system partitioning and isolation. 
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3 Network-on-Chip Application Mapping 
 
The Network-on-Chip research field deals with fifteen major problems [3]. We will focus 
next only on one of them, namely Network-on-Chip application mapping. 
 We begin by defining the Network-on-Chip application problem and by showing 
that it is an NP-hard problem. Then we show this problem is directly connected to other 
two NoC research problems: scheduling and routing. 
 We then propose a taxonomy for Network-on-Chip application mapping 
algorithms and we describe some of the state of the art algorithms for NoC mapping. 

3.1 The Network-on-Chip Application Mapping Problem 
The design flow of a Network-on-Chip architecture for a specific application implies the 
following three major steps [25]: 

1. dividing the application into a graph of concurrent tasks  (threads); 
2. assigning and scheduling the application tasks to the available IP cores; 
3. mapping each IP to a NoC tile, so that the metrics of interest are optimized. 
  
The Network-on-Chip application mapping problem was formulated in [25] as the 

topological placement of the IPs onto the on-chip tiles. It is an instance of the quadratic 
assignment problem, which is proven to be an NP-hard problem [26]. The search space 
increases factorially with the system size. For example, a NoC with 8x8 tiles theoretically 
allows 64! mappings. Theoretically, mapping N IP cores onto M network nodes ( MN ≤ ) 

implies 
)!(

!

NM

M

−
possible core arrangements on the NoC nodes. When the number of IP 

cores is identical to the number of network nodes (MN = ), the number of possible 
mappings becomes!M . This is therefore a permutation, combinatorial, problem. It 
directly affects NoC’s performance in terms of latency, throughput, power consumption, 
energy etc. This is because typical network metrics like latency and power are directly 
proportional to distance. 

A typical mapping cost function [27] is: 

∑∑
≤≤

>−
∈

⋅==∈
Nji

ji
Ll

l jiDistbwBWPCost
,1

)],([)(π , where π is a particular mapping 

from P, the set of all possible mappings. L is the set of NoC links which are used by the 
application. BWl is the bandwidth delivered over link l. Dist (i , j) is the distance between 
nodes i and j (hop count) and bwi->j  is the bandwidth required by node i for 
communicating its data to node j. 
Consider for example the following two mappings π1 and π2. They consist of six 
processing elements placed onto a 2D mesh NoC. PE2 communicates 30 bits/s to PE6 
and PE4 100 bits/s to PE3. We are interested to evaluate the two mappings using the 
above cost function. 
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Fig. 1 Example of two mappings π1 and π2 

 
For the first mapping, we have: 

 

3603100230)(

)(100)(30)(
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=⋅+⋅=
→⋅+→⋅=
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π
π
π

Cost

PEPEDistPEPEDistCost

PEPEDistPEPEbwPEPEDistPEPEbwCost

 

Similarly, for the second mapping we get: 2602100230)( 2 =⋅+⋅=πCost . Notice that the 
only difference between the two mappings is the placement of PE4 and PE5. In the 
second mapping, PE4 is closer to PE3. Because of this, given the above conditions, 
mapping π2 is better than mapping π1. 

In the field of embedded systems, an application is typically described through a 
Communication Task Graph (CTG). A CTG is defined in [28] as a directed acyclic 
graph, ),('' DTGG = , where each vertex, Tt i ∈ , is a an application task (a computational 

module in the application). A task typically has assigned to it information like: execution 
time on every type of Processing Element (PE) available for the NoC, energy 
consumption (when assigned to a certain PE), task deadline (the time until the task 
associated with the CTG node must complete its execution [29]), etc. A directed arc 
between it and jt , is noted as Dd ji ∈, and has a value associated to it, which represents 

the communication volume ( )( , jidv , usually expressed in bits) exchanged between tasks 

it and jt . Each arc shows both data and control dependencies. A data dependency marks 

that there is a communication between the two tasks ( it and jt ) [30]. A control 

dependency indicates that a task cannot be executed before its predecessor tasks are not 
completely executed [30]. Thus, a data dependency is basically an undirected arc between 
two tasks. When such an arc is present between two tasks, it means that the two tasks are 
communicating. When the arc is directed, the arc’s arrow shows a control dependency 
between the two tasks. 

Note that a CTG is defined as an acyclic directed graph. However, in reality, the 
tasks of an application may exhibit a communication pattern which creates loops. Loops 
are not usually modeled with a CTG because of real-time considerations. For hard real-
time applications, unbounded loops are avoided because they do not allow bounds on 
graph execution times. It is not possible to guarantee that the worst-case communication 
volume path can be executed under the specified deadline. It is preferred that deadlines 
can be assigned to tasks and a CTG typically has a period attached to it. The CTG can 
therefore be reiterated after a certain amount of time [31]. 

The Directed Acyclic Graph (DAG) model of a parallel program is used in [32] to 
address the scheduling problem. In our humble opinion, the Network-on-Chip research 
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community adopted the DAG model, from the scheduling research area, with the name of 
Communication Task Graph. 

A task is defined in [32] as a set of instructions that are executed sequentially, on 
the same processor, without preemption. The task is a node in the DAG. It may have a 
weight attached to it, which represents the computational cost. However, a CTG does not 
weight the nodes because it is only communication oriented. 

The DAG arcs model the communication messages and the precedence 
constraints between tasks. The arcs are weighted with communication costs. If two 
communicating tasks are assigned to the same processor, their communication cost will 
be neglected. The precedence constraints are what make the graph to be directed. They 
show how communication flows among tasks. A node is not allowed to start its execution 
until it receives all the messages from its parent nodes. 

Program loops cannot be explicitly represented using the DAG model. 
Conditional branches are not included as well. According to [32], including loops and 
branches in the DAG model is an implicitly difficult problem. Additionally, many 
numerical applications (e.g.: Fast Fourier Transform) contain loops with a number of 
iterations known at compile time. For such programs, techniques like loop unrolling [6] 
can be applied. This way, one or more loop iterations can form a task. Also, large classes 
of numerical applications and data-flow programs have very few conditional branches. 

Scheduling a DAG with probabilistic branches and loops was addressed in [33]. 
Each graph arc has a probability that the child node will be executed immediately after 
the parent node. Scheduling DAGs with conditional branches is made in [34] by using, 
beside the precedence graph, a branch graph, too. Although DAG models that deal with 
loops and/or conditional branches have been proposed, the Network-on-Chip research 
community adopted the simple DAG model, without loops and conditional branches. 
Therefore, a CTG does not model program loops nor branches. It focuses on the 
communications among the tasks of data-flow programs. 

The acyclic property of a Communication Task Graph is dropped at a coarser 
level, denoted by an Application Characterization Graph (APCG). An APCG models 
an application at the level of Intellectual Property (IP) cores and it is defined in [28] as: a 
directed graph, ),( ACGG = , where each vertex Cci ∈ represents an IP core and each 

directed arc, Aa ji ∈, , characterizes the communication between coresic and jc . This 

may be application specific information like communication volume. It can also be 
design constraints, like communication bandwidth, area of IP cores, etc. As in the case of 
a CTG, a directed arc of an APCG shows data and control dependencies. But, compared 
to a CTG, an APCG allows cycles. For example, we can have a bidirectional 
communication between two cores. Note that loops are still not desired in APCGs 
because of real-time constraints. It is often preferred to transform a directed graph into a 
Directed Acyclic Graph (DAG) [35]. This allows worst-case execution time analysis, 
which makes the APCG usable in hard real-time systems as well. 

An Application Characterization Graph is obtained from a Communication Task 
Graph by scheduling the tasks on available IP cores. 

Having the definitions for a CTG and an APCG, we can now illustrate the 
application mapping problem for NoCs using the following figure. 
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Fig. 2 The Network-on-Chip application mapping problem 

 
Obviously, the NP-hard problem cannot be solved by means of exhaustive search. 
Heuristic algorithms [36] are employed with the purpose of finding the best topological 
placement of cores onto network nodes. The objective is to optimize network latency, its 
energy consumption, etc. Multiple objectives may be followed at the same time, too. 
 We show next that Network-on-Chip application mapping interacts directly with 
other two NoC research problems: routing and application scheduling. 

3.1.1 Application Mapping and Routing Problems 
While a good mapping of cores onto network nodes can lead to energy savings, the routes 
used by the cores to communicate can have a great impact on the NoC’s performance. 
The best topological placement of cores onto nodes is not enough to account for the 
performance of the network. The next figure shows an example where two minimal 
routes are available between the top-left and bottom-right tiles of a 2D mesh NoC. 
Choosing the proper route can increase the performance of the network. 
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Fig. 3 The application mapping and routing problems 

 
This shows that the application mapping problem is tightly connected to the routing 
problem. Usually it is not necessarily to generate routing paths when placing IP cores 
onto NoC tiles. A mapping algorithm may simply consider that the NoC architecture is 
using a particular routing protocol (like XY routing in [25]). However, routing 
information can help at obtaining a better mapping [37]. 

3.1.2 Application Mapping and Scheduling Problems 
Before mapping the IP cores onto the Network-on-Chip tiles, the application’s tasks and 
communication transactions must be assigned to the NoC resources. Additionally, the 
tasks’ execution order must be established. This is called the scheduling problem for 
NoC architectures [38] and is an NP-hard problem as well. It has a considerable influence 
on the energy consumed by the IP cores when computing, due to their heterogeneity. For 
example, a DSP core may consume less energy than a general purpose processor when 
computing a Fast Fourier Transform. Also, the communication energy consumption of 
the NoC architecture is affected by the task assignment (because of the routing paths). 

Therefore, the application mapping problem is connected to the scheduling and 
routing problems. The following figure illustrates this fact. 
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Fig. 4 The scheduling, application mapping and routing problems 

 
An application is described through its Communication Task Graph. A scheduling 
algorithm is then used to assign application tasks (threads) to available IP cores and to 
specify their order of execution. After the scheduling step, the Application 
Characterization Graph is obtained. Then, using a mapping algorithm (which may 
generate the routing function as well), the IP cores are topologically placed onto the NoC 
tiles. 
 We observe that both scheduling and mapping algorithms for Networks-on-Chip 
have similar objectives. Increasing the performance and decreasing the energy 
consumption of a NoC, for a particular application, are two optimizations typically made 
by such algorithms. 

Ideally, both scheduling and mapping problems should be treated together. In 
other words “scheduling” means mapping the application’s tasks onto the available IP 
cores, and “mapping” means mapping the IP cores onto the available NoC nodes. 
Therefore, both scheduling and mapping problems deal with application mapping onto a 
Network-on-Chip. 

Nevertheless, because of the NP-hard complexity of the problem, mapping 
applications onto NoCs is divided in a two-step process: scheduling, followed by 
mapping. 

3.2 Taxonomy for the Application Mapping Algorithms 
An application mapping algorithm takes into consideration the characteristics of the 
application, and it has the purpose of finding the best placement of IP cores, onto the tiles 
of the Network-on-Chip architecture. Obviously, the application mapping algorithm must 
be aware of the NoC topology. The placement of the cores onto the network nodes can be 
made before the application starts to be executed and it cannot be changed afterwards. We 
call this type of mapping a static mapping. Obviously, the mapping process is iterative: 
multiple mappings are generated until the optimum mapping is found but, in case of static 
mapping, all the mappings are obtained before the application starts running. If the 
mapping of cores changes while the application runs, we have a dynamic mapping. This 
is typical for NoCs that are fault tolerant or application-adaptive. This kind of mapping 
could also lead to an increase of network performance and/or to a decrease in power 
consumption but, it is more difficult to implement (than static mapping is). 
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The factorial number of possible mappings can be decreased because it is very 
likely that not every mapping is feasible. This is because of the communication demands 
of the application and the hardware limitations of the underlying Network-on-Chip 
architecture. For example, consider that we have two communicating IP cores which 
require a bandwidth of B bytes/s. The NoC architecture may have some links that support 
such high bandwidth and other links that do not support it. In such a case, mapping the 
two IP cores so that they would require communicating over links that do not support the 
required bandwidth would generate an impractical mapping. The bandwidth requirement 
is an example of a mapping constraint. We define the mapping constraint (MC) as a 
restriction, derived from the requirements of the application and the characteristics of the 
Network-on-Chip architecture, imposed when associating IP cores to network nodes. Any 
mapping constraint may limit the size of the search space. An application mapping 
algorithm may or may not use one or more mapping constraints but, usually this should 
be an obvious thing to do because it would speed up the mapping algorithm. The 
difficulty of using a mapping constraint consists of having the means to evaluate if a 
mapping satisfies or not that constraint. 

The application mapping algorithm explores the search tree of possible mappings 
and tries to find the best mapping (for a certain application and NoC architecture). In 
order to determine the best mapping, at least one optimization goal is required. Example 
of optimization goals can be: network performance, communication energy, power 
consumption, etc. Thus, a mapping algorithm may search for the best mappings by 
considering a single objective or even multiple objectives. 

As we showed in Section  3.1.1, the mapping problem is also closely related to the 
routing problem. Any routing algorithm may be applied after the mapping has been done. 
However, if the mapping algorithm is not routing aware, it is possible that the best 
mapping does not actually provide the best network performance due to the fact that the 
routing paths were not considered when applying the optimization goals to the possible 
mappings. A mapping algorithm can thus, deal with identifying the routing paths for the 
mapped IP cores as well. The routing function can be deterministic or adaptive. Also, it 
should provide freedom from deadlock and livelock, and it may have other characteristics 
like being minimal. 
 To summarize, we have established that we have two types of application 
mapping algorithms: static and dynamic. Any mapping algorithm, whether static or 
dynamic has at least one optimization goal (single-objective or multi-objective). It may 
use (one or more) mapping constraints. Also, it may determine the routing function, 
during mapping. The routing can be deterministic or adaptive and it can have other 
properties like freedom form deadlock and others. We have thus four classification 
criteria: 
 

static single objective mapping type 
dynamic 

optimization 
goals multiple objective 

with one or more 
mapping constraints 

generates routes 
while mapping mapping 

constraints without any mapping 
constraint 

routing 
awareness does not generate 

routes 
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An application mapping algorithm can be static or dynamic. Either static or dynamic, the 
mapping algorithm can have a single objective (SO) or multiple objectives (MO) to 
optimize. Characteristics like using mapping constraints and being routing aware (RA) 
are optional and can be applied to any type of mapping algorithm (making it thus more 
specific). 
 Finally, we note 
that in [39], where the 
scheduling problem is also 
considered, the algorithms 
are classified as integrated 
or separated based on 
whether they treat NoC 
mapping and scheduling 
together or not. We 
consider this to be good 
classification criteria when 
including application 
scheduling, too. The 
algorithms presented in the above cited paper are for NoCs and for bus-based 
multiprocessor embedded systems. The NoC algorithms are classified only by whether 
they have routing awareness or not. The algorithms for bus-based systems are classified 
according to their optimization goal (energy minimization, handling soft real time 
constraints or memory awareness). Issues like mapping type and mapping constraints are 
also mentioned but they are not used as classification criteria. The single/multi objective 
(optimization goals) criterion is not included. Therefore, we consider our proposed 
taxonomy to be in accordance with the one from [39] but, more general and suitable. 
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Fig. 5 Taxonomy for application mapping algorithms 
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4 Designing a Unified Framework for the Evaluation 
and Optimization of NoC Application Mapping 

Algorithms 
 
The NoC application mapping problem is addressed by the research community through 
application mapping (heuristic) algorithms. As we have already shown in Chapter  3, these 
algorithms consider the characteristics of both the application and NoC architecture. 
However, currently, the existing application mapping algorithms are basically evaluated 
only on 2D mesh topologies. But, they can be extended, to work with other network 
topologies, too. These algorithms are evaluated only on some specific NoC designs and 
also, their performance cannot be directly compared because a common evaluation 
methodology is missing. 

We propose a unified framework for the evaluation and optimization of Network-
on-Chip application mapping algorithms, called UniMap . Such a framework will allow a 
better comparison of their performance. The framework will also be flexible so that many 
NoC designs (e.g.: different network topologies) can be used for testing the performance 
of the mapping algorithms. An overview of UniMap was published in [40], [41]. Our 
framework is an open source project available under GPL v3 license for the research 
community [42]. 

We have successfully used UniMap on our High Performance Computing (HPC) 
System [43] from “Lucian Blaga” University of Sibiu, Romania . Our HPC currently 
has 30 Intel Xeon E5405 homogenous quad cores (15 blades, 120 cores), operating at a 
frequency of 2 GHz. This means a total of 120 Intel cores. This HPC system also 
includes 4 IBM Cell  Broadband Engine (Cell BE) processors (2 blades, 36 cores). The 
IBM Cell is a heterogeneous multicore, consisting of a 64-bit dual thread PowerPC 
(master) core plus 8 SIMD processors. These (slave) vectorial processors, called SPU 
(Synergistic Processor Unit), are specialized for data intensive processing domains like 
cryptography, media and scientific applications. The HPC allocates 4.84 GB of DRAM 
memory for each two Intel quad cores and 7.85 GB of DRAM memory for each two IBM 
Cell cores. This means a total of 88.3 GB of DRAM memory. The total storage capacity 
is approximately 1.2 TB. We also performed simulations with UniMap on the HPC 
system from Politehnica University of Bucharest, Romania. UniMap is written in Java 
(except the NoC simulator, which is written in C++) which makes it highly portable and 
feasible to be further improved with concurrent programming characteristics. 

4.1 The Unified Framework Design 
UniMap is composed of the following major modules: 

- a model for representing real applications; 
- a module for assigning the application tasks to IP cores (Scheduller); 
- a module that contains application mapping algorithms (Mapper); 
- a model for representing different Network-on-Chip architectures; 
- a Network-on-Chip simulator. 

This design reflects the interaction between the Network-on-Chip application mapping 
problem and the other two problems with which it interacts (routing and scheduling – see 
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sections  3.1.1 and, respectively,  3.1.2). The modules are as decoupled as possible. This 
approach allows UniMap to be flexible, reusable (and modular). 
 We use eXtensible Markup Language (XML) schemas to describe real 
applications and Network-on-Chip architectures. The Scheduler, Mapper and NoC 
simulator modules do not interact directly. They communicate through XML models. 
This approach theoretically allows any NoC simulator to be used with UniMap. 
Similarly, any scheduling or mapping algorithm can be integrated as easy as possible. 

The following figure illustrates these components and presents the design flow of 
the unified framework. 
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Fig. 6 UniMap design flow 

 
An application running on a NoC architecture is described through its Communication 
Task Graph (CTG). The CTG presents the application partitioned into tasks (concurrent 
threads). It shows the communication pattern of the application: which tasks are 
communicating with which tasks and the communication volume of the data exchanged 
between tasks (e.g.: CV01 denotes the communication volume from task T0 to task T1). 

We propose obtaining CTGs in three distinct ways:  
1. randomly, by using the TGFF [31] tool; 
2. from realistic embedded applications, using the E3S benchmarks suite [44]; 
3. from real-world multithreaded applications, using the CETA [35] tool. 

The tasks must be first assigned to the IP cores. This can be done using a 
scheduling algorithm. For example the EAS algorithm [38] is able to perform scheduling 
under real-time restrictions, while trying to optimize the energy consumption of the NoC 
architecture. 

The IP cores library from E3S was integrated in UniMap. For each IP core, 
information like task execution time and power consumption for a given task is known. 

The output of the scheduling algorithm is the Application Characterization Graph 
(APCG). The APCG is the input for the mapping algorithm. 
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A main component of the framework will consist in a library containing (state of 
the art) application mapping algorithms’ implementations. The performance of every 
mapping algorithm can be evaluated on multiple NoC designs, through our developed 
simulator. 

The NoC simulator is another important part of the unified framework. An 
important aspect of the simulator consists in its flexibility. This will impact on the 
number of possible ways in which the simulated NoC can be configured. The simulator is 
also responsible with determining the network’s performance represented through 
multiple objectives (performance, energy consumption, etc.). This allows a thorough 
comparison of the mapping algorithms, in a unified manner. For each selected network 
design (e.g.: the network topology can be varied), an application mapping algorithm will 
provide multiple mappings, until the best mapping is determined. The NoC simulator 
includes a network traffic generator which emulates the communicational behavior of the 
application (based on CTG and APCG graphs). 

4.2 The Developed Network-on-Chip Simulator 
ns-3 NoC is a Network-on-Chip simulator that the author of this Thesis started to develop 
during his five months of PhD external research stage at Augsburg University 
(Germany), Department of Systems and Networking, led by Professor Theo Ungerer. We 
decided to develop our own NoC simulator because the current tools for this (new) 
research field are still immature. According to HiPEAC’s vision [24], mature NoC 
simulators are expected only in 2015. 

The simulator is based on the ns-3 simulation framework for Internet systems. It 
is a modular, flexible and scalable NoC simulator. It has parameters like: flit size, packet 
size, packet injection probability, packet injection rate, buffer size, switching mechanism 
(Store and Forward, Virtual Cut Through, Wormhole), routing algorithm (Dimension 
Order Routing and other two protocols that account for the network load). It supports k-
ary d-cube topologies (2D mesh, 3D mesh, 2D torus, 3D torus, hypercube etc.). It 
contains a network traffic generator based on communication patterns form real 
applications. Also, using ORION 2.0 [45], it can estimate power consumption and 
integration area. Our ns-3 NoC is an open source project, which we contribute to the 
Network-on-Chip research area. 

4.2.1 Experimental Results 
We present next some preliminary simulation results published in [46], were we 
evaluated the potential of the NoC Irvine architecture and were we showed the impact of 
the buffers’ size on NoC’s performance. The following results express the network 
performance, through the average latency of the packets, as a function of packet injection 
probability. The synchronous version of the simulator was used. During the simulation, 
the first 1000 cycles were considered warm-up cycles. Packets were injected into the 
network for 10000 cycles. Only the packets injected after the warm-up cycles were 
collected into the statistics. The Irvine architecture was used, with XY routing, wormhole 
switching, input channel buffers of 9 flits in size and packets of 8 flits in length. The 
effects of speeding up the data flits, like it is done in [47], are shown it the following 
charts. 
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 Fig. 7 shows how, on a 8x8 Irvine NoC, the average packet latency decreases as 
data flits are sent through the network using a clock frequency which is two or four times 
higher than the one used for advancing the head flits. 

 
Fig. 7 The average packet latency on a 8x8 Irvine NoC architecture, while the speed with which data 

flits advance in the network varies for 4 different communication patterns 
 

With the matrix-transpose traffic pattern and using a 4 times higher clock 
frequency for the data flits, the packet’s average latency remains close to the zero-load 
latency, as long as the injection probability is lower or equal than 0.9. The Irvine 
architecture helps at decreasing the network congestion. This is also visible for the other 
three traffic patterns. The network is significantly less congested when data flits are 
transmitted faster than head flits. For the bit-complement traffic pattern, the average 
packet latency is fairly higher because each node injects packets. This is not true with the 
other traffic patterns because they can create traffic from a certain node to exactly the 
same node, which is not injected into the network. Therefore, we believe that this 
behavior might contribute to the bit-complement’s higher packet latency. 

We did similar simulations on a 4x4 Irvine NoC, too. The simulations on an 8x8 
Irvine NoC took approximately 10 times more time than the simulations done on the 4x4 
network. The longest simulation on a 4x4 network took around 2 minutes and a half (this 
is approximately 10 times faster than NoCSim [48]). 
 In [49] we showed how the NoC performance varies on topologies like: 2D mesh, 
2D torus, 3D mesh, 3D torus and hypercube. For example, the following figure shows the 
buffer size influence on the performance of a (2x2x2x2) hypercube. Unless specified 
otherwise, the simulator’s parameters have the same values as before. 
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Fig. 8 The average packet latency on a hypercube NoC architecture, while the size of the input 

buffers varies uniformly 
 
The Network-on-Chip’s performance improves as the buffer size increases. 
 We show next how the NoC’s average packet latency decreases as we increase the 
node degree by switching from a 2D mesh to a 3D mesh and then to a hypercube. The 
simulations were made using the uniform random traffic pattern. 
 

0

2000

4000

6000

8000

10000

12000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Packet injection probability

A
v
e

ra
g

e
 p

a
ck

e
t 

la
te

n
cy

 [
cy

cl
e

s]

8x8 2D mesh 4x4x4 3D mech 4x4x2x2 hypercube
 

Fig. 9 Average packet latency on 64 node mesh NoCs, with 2, 3 and respectively 4 dimensions 
 
We observe a significant increase in the NoC’s performance when using a 3D mesh. The 
performance increases even further when placing the 64 nodes in a hypercube topology. 
We observed the same behavior torus topologies. 
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5 Benchmarks 
 
In the previous chapter we presented our developed unified framework for the evaluation 
and optimization of Network-on-Chip application mapping algorithm. UniMap uses as 
input traffic patterns for real applications, described through directed graphs. As stated in 
[30] Network-on-Chip benchmarking is still an open problem. The Open Core Protocol 
International Partnership (OCP-IP) is currently working to model real applications for 
NoC benchmarking [50]. 

This chapter presents the benchmarks used in this PhD thesis, for studying the 
Network-on-Chip application mapping problem. All benchmarks describe real 
applications, designed for Systems-on-Chip (SoCs). These applications are modeled 
using Communication Task Graphs. We gathered some of the most used CTGs and 
APCGs by the NoC research community and integrated them in UniMap, through a 
common XML representation. The communication graphs are taken from the Embedded 
Systems Synthesis Benchmark Suite (E3S) [44] and from some of the most cited papers 
from the field of Networks-on-Chip. We also make our contribution to Network-on-Chip 
benchmarking, by proposing two new Communication Task Graphs for a H.264 video 
decoder. 

In this PhD thesis abstract we present only the first Communication Task Graph 
for the H.264 video decoder. 
 CTG 0 presents a H.264 decoding system that uses data partitioning: the video 
stream is equality divided onto more CPUs, each one of them running a H.264 decoder. 
 

 
Fig. 10 H.264 CTG 0 (period: 0.0009765625 seconds) 

 
 With the functional partitioning approach, the messages between the decoder 
tasks are communicated. With data partitioning, data dependencies among data partitions 
are communicated. It is shown in [51] that, with data partitioning, a significant bandwidth 
reduction is obtained. 

From H.264 CTG 0 we created APCG 0, with 14 cores, by grouping the two tasks 
for accessing the intra mode memory (i m mem rd and i m mem wr). 
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6 Optimized Simulated Annealing for Network-on-Chip  
Application Mapping. A Domain-Knowledge Approach 

 
Simulated Annealing (SA) [52] is one of the first heuristic algorithms used to address the 
Network-on-Chip application mapping problem.  

The advantages of Simulated Annealing are given by its ease of implementation, 
its applicability to many combinatorial optimization problems and the ability to give 
reasonably good solutions [53]. 

However, the parameters of the algorithm must be carefully chosen, since SA can 
easily run for a very long time until it gives a suitable solution. Because Simulated 
Annealing is a very general algorithm, several choices must be made in order to 
implement it for a particular problem.  

This chapter presents a domain-knowledge approach to Network-on-Chip 
application mapping problem. We describe an Optimized Simulated Annealing (OSA) 
[54] algorithm that we designed for the topological placement of cores onto NoC nodes. 
OSA uses an application- and network-based exploration of the search space. Using 
knowledge about communication demands, the IP cores are clustered implicitly and 
dynamically. We compare OSA with the above mentioned simulated annealing technique 
and with a branch and bound algorithm, too. We focus on algorithm speed, memory 
consumption and solution quality. 

6.1 The Algorithm 
OSA was created by continuing the work of Hu and Marculescu. Their Simulated 
Annealing and Branch and Bound algorithms are available through the NoCmap project 
[55]. We have ported their two algorithms, written in C++, into UniMap (written in Java).  
OSA also uses some of the best practices for Simulated Annealing applied for assigning 
tasks to processors [56]. We justify our approach by the fact that NoC application 
mapping problem is closely related to the NoC scheduling problem [28].  

We present next the Optimized Simulated Annealing pseudocode, which is 
derived from the general Simulated Annealing from [56]. 
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Fig. 11 Optimized Simulated Annealing 

 
OSA starts from an initial mapping, Mi, which is randomly generated. Another input 
parameter can be the initial temperature, T0, set to 1 by default. The mapping’s cost is 
obtained using the bit energy model from [25]. We use a standard geometric annealing 
schedule, with 
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annealing iterations per temperature level. This number corresponds to how many 
mappings may be obtained from the current mapping, by moving one core. SA has LSA = 
100n2 (we noted the number of NoC nodes with n). It is obvious that OSA SAL L< . Also, in 

terms of algorithm complexity, we note that 
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This speedup is in perfect concordance with our further experimental results. 
While other Simulated Annealing approaches (for NoC application mapping) 

select the core to be swapped randomly, OSA does not use a uniformly random 
probability when determining the core to be moved. Instead, it adapts the variable grain 
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single move (based on probability densities and used for task mapping [56]) into a 
variable grain swapping move, which uses two Probability Density Functions (PDFs). 
OSA builds a Probability Density Function (PDF) for each core, based on the amount of 
data it communicates. This leads to better chances for selecting a core that communicates 
more data than a core which communicates less data. As the annealing temperature 
decreases, the probabilities uniformly equalize. Therefore, at low temperatures, all cores 
have an equal chance to get selected for swapping. Through this approach, OSA uses 
problem knowledge (dynamic characteristics) to explore the search space. The following 
function is used: 

0

1 1
[ ] icoreToCommT

P SelectedCore i
c T totalToComm c

 = = + − 
 

, where: 

- c is the number of cores to be mapped; 
- T and T0 are the current and initial temperatures; 
- totalToComm is the total amount of data communicated by the all cores; 
- coreToCommi is amount of data communicated by core i. 

The second core used for swapping is selected by accounting for the communication 
volumes between the core to be swapped and the rest of the cores. Another Probability 
Density Function is built for each core. It is similar with the one above but, it does not 
consider only the data communicated by the core but, also the data received by the core. 
Also, this second PDF is not temperature dependent. Each core gets such a PDF 
associated before the annealing starts. This PDF is defined 

as
totalComm

comm
ccP ij

ji =↔ ][ , where: 

- commij is the communication volume between core i and j (this value is positive if 
core i sends data to core j, or core j sends data to core i; otherwise, it is zero); 

- totalComm is the communication volume of the entire application. 
According to the PDF described above, the second core is selected for swapping. Then, 
OSA searches, in a uniformly random way, for a direct neighbor of the second selected 
core. This one will be swapped with the first selected core. This approach tries to make 
communicating cores to attract each other, to cluster themselves, in a natural manner. 
OSA’s move function performs an implicit clustering of the communicating cores, using 
a stochastic approach. 
 Compared to Cluster-based Simulated Annealing (CSA) [57], our algorithm 
clusters the cores dynamically, during the annealing phase. OSA does not work with 
predetermined clusters, and it also does not cluster the NoC nodes. Network-on-Chip 
node clustering is not needed because OSA looks in the NoC node’s neighborhood. 
 We call this kind of move a PDF-based swapping move. At every temperature 
level, OSA performs exactly LOSA PDF-based swappings. 

We use the normalized inverse exponential acceptance function because this is the 
one recommended by [56]. OSA stops when the final temperature (Tf = 0.001) is reached 
and the number consecutive rejected moves, R, reaches L. This corresponds to the 
coupled temperature and rejection threshold stopping condition proposed in [56]. While 
in [56] R counts how many moves were rejected since the last accepted move, in OSA we 
use R to count how many moves were rejected, per temperature level, since the last 
current best mapping was found. This means that while OSA requires no best mapping to 
be found during an entire temperature level, the general Simulated Annealing from [56] 
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needs to wait until the number of unaccepted moves, counted from the last one accepted, 
reaches L. OSA’s stopping condition is therefore more coupled to Tf. than to R. This 
makes OSA’s number of iterations to be independent of the NoC topology and its size. 
Since we consider that the energy variations are small enough when the final temperature 
is reached, we believe our way of computing R is more suitable for a Simulated 
Annealing applied to NoC application mapping. 

Currently, OSA works only with 2D mesh topologies but, it can be adapted to 
work with other NoC topologies, too. Like Hu and Marculescu’s SA, OSA is also capable 
to generate the routing functions, in a deadlock- and livelock-free manner, and to check if 
the obtained mapping meets the bandwidth constraints. 

Compared to the general SA, OSA determines how many iterations to make per 
temperature level by considering the mappings’ neighborhood size. Using Probability 
Density Functions, OSA performs an implicit and dynamic core clustering (CSA’s 
clustering is explicit and static). 

6.2 Experimental Results 
In this section, we evaluate our Optimized Simulated Annealing by comparing it with 
Simulated Annealing and Branch and Bound. The evaluation is three folded. We account 
for execution runtime, memory consumption and solution quality. We show next only the 
most representative results. More detailed results are available in [58]. 

We begin with a runtime comparison between OSA and SA and respectively OSA 
and BB. The speedups represent an average of the 1000 runtime speedups obtained for 
each benchmark. 
 

 
Fig. 12 OSA speedup over SA 

 
The chart above clearly shows OSA is much faster than Hu and Marculescu’s Simulated 
Annealing. We have obtained a 98.95% speedup on average. This is in perfect 
concordance with our theoretical speedup expectations. The “lowest” speedups are on 
office-automation and PIP, the benchmarks with the smallest number of IP cores. We 
justify this significant speed gain mainly by the way OSA computes the number of 
iterations per temperature level. This number takes into consideration the NoC size, the 
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number of cores to be mapped, and it is much lower than the number used by Hu and 
Marculescu. 
 The following chart shows how fast OSA is compared to Branch and Bound. 
 

 
Fig. 13 OSA speedup over BB 

 
It can be seen that OSA is slower than BB by ~ 24%, on average. However, for half of 
the benchmarks, OSA is faster. Compared to Branch and Bound, our algorithm obtained 
poor runtimes on MPEG4 (more than twice slower), H.264 (~ 1.5 times slower in both 
cases) and slower but similar runtimes for PIP, office-automation, VOPD (CTG 1) and 
auto-indust. We also observe OSA was faster on the biggest benchmarks: 25% speedup 
for MMS (with 25 cores) and ~ 41% speedup for telecom (30 cores). 

Next we show how OSA’s memory consumption is, compared to the memory 
consumed by Simulated Annealing and Branch and Bound. 
 

 
Fig. 14 OSA compared to SA in terms of heap memory consumption (a positive value means OSA 

consumes less memory) 
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Simulated Annealing consumes less memory than OSA when mapping the benchmarks 
with more than 16 cores. OSA manages to beat SA on several benchmarks with 16 cores 
but, on average, Simulated Annealing consumes with ~13% less memory than our 
Optimized Simulated Annealing. 
 However, compared to Branch and Bound, OSA takes a little bit less memory on 
average. This is shown in the next chart. 
 

 
Fig. 15 OSA compared to BB in terms of heap memory consumption (a positive value means OSA 

consumes less memory) 
 
Actually, this chart points out the tendency of Branch and Bound to grow its memory 
requirements as the problem size gets higher: OSA consumes with more than 33% less 
heap memory than BB, on telecom. 

Now we present the quality of the solutions found by the three algorithms. We are 
interested in solutions with the smallest cost possible because the cost function we used 
estimates the energy consumed by the Network-on-Chip. 
 The following chart compares the mappings found by SA and OSA. For each 
benchmark, we evaluate the 1000 mappings returned by the two algorithms and count 
how many times one algorithm retuned mappings better (marked with “<” in the chart’s 
legend) than the other one. Cases when both algorithms returned mappings with exactly 
the same cost are marked distinctively. 
 



Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach 

25 

consumer
networking

office-automation
telecom

PIP
MPEG4

MWD
H.264 ctg 0

H.264 ctg 1
VOPD ctg 1

VOPD ctg 0
MMS ctg 0

MMS ctg 1
AVERAGE

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.
6

0%

0
.0

0
%

0
.0

0
%

0.
1

0%

0
.0

0
% 3
5.

90
%

14
.3

0
%

38
.4

0%

47
.5

0
%

5.
3

0% 3
6.

60
%

6
0.

60
%

5
7.

0
0%

21
.3

6
%

0.
20

%

0.
0

0%

0.
0

0%

1
.3

0
%

0.
0

0%

28
.7

0
%

0.
70

%

36
.0

0
%

47
.5

0
%

4
4.

8
0%

4
5.

70
%

38
.6

0
%

42
.8

0
%

2
2.

2
7%

SA < OSA SA = OSA OSA < SA

Benchmark

 
Fig. 16 OSA mapping costs, compared to SA mapping costs 

 
We notice that both algorithms find the same “best solution”, after all 1000 runs, for 
benchmarks: networking, office-automation and PIP. For the last two of these three 
benchmarks, we confirm the solution is optimal because we applied an exhaustive search. 
Overall, OSA finds worse solutions than SA for 6 of the 14 benchmarks used in our 
simulations: MPEG-4, MWD, H.264 (CTG 0), MMS (CTG 0), MMS (CTG 1) and 
consumer. 
We have also found out that SA and OSA always find the same best solution. However, 
Branch and Bound fails to obtain a mapping that consumes at most like the best mapping 
found by SA and OSA in two cases: for MMS (CTG 1), the energy lost with BB’s 
mapping would be 0.1 % and for auto-indust, the energy loss is ~6%. 
 We measured the difference between the worst and best mappings found for each 
benchmark by SA and OSA. With our Optimized Simulated Annealing, the variation 
between the worst and best mappings was not higher than 8%. However, with SA we 
obtained the highest variation to be 70% for MMS (CTG 1). For the rest of the 
benchmarks SA did not varied with more than 6%. Excluding MMS (CTG 1), the SA 
average variation was 1.51% and the OSA average variation was 2.56%. If we also 
consider MMS (CTG 1), SA had an average variation of 5.85% while OSA’s value was 
less than half (2.53%). We conclude that the variations between the best and worst 
mappings are comparable for SA and OSA. 

Fig. 17 shows how many times the best solution, given by all three algorithms, 
was found by each one of them. 
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Fig. 17 Best solution percentage 

 
This chart shows that OSA finds the best solution more often than SA for several 
benchmarks: auto-indust, telecom, MPEG4, H.264 (CTG 0), VOPD (CTG 1). BB 
outmatches OSA for the MMS benchmarks, VOPD (CTG 0), H.264 (CTG 1), MWD and 
consumer. Another observation is related to BB: it finds the best solution with probability 
1 for all benchmarks, except auto-indust and MMS (CTG 1). 

We also averaged the quality of the 1000 mappings per benchmark. Branch and 
Bound is the algorithm that, on average, gives the mapping with the smallest energy 
consumption. It fails just on auto-indust benchmark, where OSA provides the best 
average mapping cost. Optimized Simulated Annealing achieves for MMS (CTG 1) a far 
better average cost compared to Simulated Annealing: more than 34% energy gain is 
obtained with OSA. For the rest of the benchmarks, the differences between OSA and SA 
are less than one percent. Compared to BB, OSA provides solutions that are worse with 
no more than 2.5% on each benchmark, except auto-indust, where OSA is better with 
more than 6% than Branch and Bound. 

Using 1000 simulations per benchmark, we have previously shown that the 
percentage of better solutions was lower for OSA than for SA on six benchmarks: 
MPEG-4, MWD, H.264 (CTG-0), MMS (both CTGs) and consumer. We present here our 
attempt of increasing OSA’s quality of solution by increasing the initial temperature. We 
applied this technique on the benchmarks mentioned above, with the purpose of getting 
OSA’s percentage of better solutions over SA’s percentage. Increasing the initial 
temperature allows OSA evaluate more mappings. Also, the higher the temperature, the 
bigger is the probability to accept “bad” moves during the annealing process. 
 Through this technique the quality of solution for our Optimized Simulated 
Annealing got better, matching SA’s quality of solution i.e., OSA’s percentage of better 
mappings overcame the corresponding SA percentage. Still, we had one exception: we 
were unable to obtain the desired outcome for MMS (CTG 1). We disregard this 
undesired result due to the fact that in this case, on average, SA consumes with more than 
34% more energy than OSA. 
 Note that we have increased OSA’s initial temperature exponentially because, due 
to the OSA’s geometric annealing schedule, an exponential increase of temperature leads 
to a linear increase of the number of temperature levels. 
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 The following table presents OSA’s speedup over SA, in terms of runtime, and 
the initial temperature required by OSA to beat SA. 
 

Benchmark Speedup (%) Initial temperature  
MPEG4 97.51 1e10 
MWD 96.76 1e10 
H.264 (CTG 0) 99.18 1e2 
MMS (CTG 0) 97.41 1e17 
MMS (CTG 1) 61.40 1e107 
consumer 98.91 2 

 
If we ignore MMS (CTG 1), we see that the speedup remained high even with the 
increase of initial temperature. 

In order to illustrate how important OSA’s clustering technique is, we present 
next a comparison between OSA with and without clustering. The single thing that 
distinguishes OSA without clustering from OSA (with clustering) is that, in the first case, 
the simple random core swapping is used, without any restrictions. 
 The following chart shows how frequently the best solution is found. 
 

 
Fig. 18 The influence of OSA’s clustering on best solution percentage 

 
For all benchmarks, OSA with clustering finds the best solution more frequently than 
OSA without clustering. More than this, we observe significant differences for the 
benchmarks mapped onto the 4x4, 5x5 and 6x5 2D mesh NoCs. It is important to 
mention that the two OSA variants find the same best solution for all benchmarks, except 
MMS (CTG 1). In this case, the best solution found by OSA w/o clustering is with 0.02% 
worse. 
 The next chart shows how much energy is consumed on average by OSA without 
clustering (compared with OSA using clustering). 
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Fig. 19 Average energy consumed by the mappings obtained with OSA without clustering 

 
It may be noticed that OSA without clustering finds mappings that consume additional 
energy. The clustering technique leads to lower energy consumption with more than 1% 
in some cases. OSA with clustering always gives better average results than OSA without 
clustering. 

Finally, we present the simulation results on bigger 2D meshes. We used four 
instances of the VOPD benchmark with 16 cores (like in [57], because applications with 
a high number of cores are lacking and because we preferred using real applications 
instead of randomly generating core graphs, like in [25], [37]) and obtained a benchmark 
with 64 cores. Using SA, OSA and BB, we mapped it on an 8x8 2D mesh. SA was run 
ten times and OSA and BB run 100 times. 

We obtained an average running time of ~ 12.65 hours (per simulation) for SA. 
OSA ran for approximately 155 seconds, while BB required just ~ 114 seconds. 
Averaging the results from the 100 runs, OSA was ~36% slower than BB. Still, OSA 
runtime is significantly lower than CSA’s runtime: 4750 seconds [57]. 

OSA consumes with approximately 39% less memory than Branch and Bound. 
During the 100 simulations, OSA’s peek memory consumption was 37.3 MB, while BB 
required a maximum memory of 85 MB. 

The best mapping was found by Simulated Annealing. However, OSA’s best 
mapping is only ~ 0.7% worse. Branch and Bound finds a best mapping that consumes 
around 64% more than the best mapping found by SA. Averaging the 100 mappings done 
by OSA and comparing them with the ones obtained with BB, we have observed that 
Branch and Bound obtains on average a mapping cost ~70% worse. 
 We have aggregated all the E3S benchmarks used in our previous simulations and 
obtained 84 cores that we mapped onto a 10x9 2D mesh. Again, SA run 10 times, while 
OSA and BB run 100 times. 

SA required a very big time to run one simulation: approximately 70 hours. OSA 
ran for approximately 526 seconds, while Branch and Bound needed only 380 seconds. 
Averaging the results from the 100 runs, Optimized Simulated Annealing was ~48% 
slower than BB. 

OSA consumed approximately the same of memory Branch and Bound required. 
During the 100 simulations, OSA’s peek memory consumption was 62 MB, while BB 
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required a maximum memory of 71 MB. We believe Branch and Bound manages to keep 
the memory consumption not growing exponentially by pruning most of the search space 
(we observed BB, in several simulations, to prune 85% to 93% of the explored search 
space). 

Averaging the 100 mappings done by OSA and comparing them with the ones 
obtained with BB, we have observed that Branch and Bound obtains on average a 
mapping cost ~76% worse. Simulated Annealing found the best solution but, it is better 
than OSA’s best solution by only 0.09%. 
 Using the H.264 (CTG 1), MMS (CTG 0), MMS (CTG 1), MPEG4, MWD and 
VOPD (CTG 0) benchmarks, we have obtained 97 cores that we mapped onto a 10x10 
NoC. Because of the huge running time SA needed for mapping the previous application, 
we simulated these application with 97 cores only with OSA and BB (both were run ten 
times). 
 Optimized Simulated Annealing run on average approximately 15.9 minutes per 
simulation. Branch and Bound needed only two thirds of this time: ~15.44 minutes for 
each mapping simulation (OSA is only 3% slower than BB). 
 Branch and Bound consumed around 40 MB of memory and Optimized 
Simulated Annealing required approximately 45 MB. 
 Once more, OSA found every time mappings better than the ones found by 
Branch and Bound. Averaging the 100 mappings done by OSA and comparing them with 
the ones obtained with BB, we have observed that Branch and Bound obtains on average 
a mapping cost ~76% worse. 
 By combining all non E3S benchmarks (PIP, H.264, MPEG4, VOPD, MWD, 
MMS), we get a benchmark with 131 cores, which we mapped onto a 12x11 Network-on-
Chip. OSA and BB mapped this benchmark ten times. 
 OSA required, on average, approximately 51 minutes mapping this application. 
Branch and Bound was ~15% faster: it needed only around 44 minutes, on average. 
 In this case, OSA consumed less memory, 36 MB, while BB memory 
requirements were 14% higher. 
 Optimized Simulated Annealing found each time a mapping that consumes 
significantly less memory. On average, OSA’s solutions need 79.4% less memory than 
BB’s solutions. 
 Finally, we combined all of our benchmarks an obtained an application with 215 
cores. We used OSA and BB to map it (ten times) onto a 15x15 NoC. 
 Optimized Simulated Annealing run for 8.4 hours, on average. OSA consumed on 
average 265 MB of memory, for each mapping. 
 Branch and Bound run on average 3.77 hours for each mapping. This is more than 
half OSA’s runtime. Memory consumption was also significantly lower: only 158 MB. 
However, we obtained no solution from BB, after all ten mapping. All mapping attempts 
will Branch and Bound failed. No suitable solution was found because, each time, the 
algorithm pruned more than 98.7% of the search space. This severe pruning did not allow 
BB to finish mapping the application. This leaves us to believe that Branch and Bound’s 
memory consumption does not grow exponentially but, the quality of solution is heavily 
affected, up to the point where the algorithm does not give any solution. 
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7 Designing Domain-Knowledge Evolutionary 
Algorithms for Network-on-Chip Application Mapping 

 
Evolutionary Computing (EC) [59] is a part of Artificial Intelligence (AI) inspired from 
the evolution process encountered in Biology. The heuristic algorithms from this field of 
research address NP-hard optimization problems by means of natural selection and 
evolution mechanisms. The search space is filled with candidate solutions, called 
individuals. 
 Evolutionary Algorithms (EAs) are used in many research fields to address 
single-objective and multi-objective optimization problems, based on the concept of 
Pareto efficiency [60].  
 In this chapter, we use UniMap (see Chapter  4) to evaluate and optimize two 
evolutionary algorithms: an Elitist Genetic Algorithm (EGA) and an Elitist Evolutionary 
Strategy (EES). After approaching our problem with an Optimized Simulated Annealing 
technique, we decided to switch to evolutionary algorithms due to their intrinsic 
parallelism. Evolutionary techniques perform searches starting (in parallel) from multiple 
points in the search space. Our evaluated algorithms optimize the Network-on-Chip 
communication energy. We consider multiple crossover and mutation operators, specific 
for permutation problems, like NoC application mapping is. Using problem specific 
knowledge, we propose such context-aware operators. We show such operators improve 
the evolutionary algorithms’ performance. We try to find out which crossover and 
mutation leads to the best solutions. We also research whether crossover or mutation 
helps more the evolutionary algorithms. These algorithms are compared with our 
Optimized Simulated Annealing (OSA) technique (see Chapter  6). Finally we approach 
our problem in a multi-objective way: besides minimizing NoC communication energy, 
we also try to obtain a mapping that is thermally balanced. 

The work presented in this chapter was submitted (on July 21st
, 2011) to the 

Journal of Systems Architecture (JSA - http://ees.elsevier.com/jsa). Since July 25th, 2011, 
it is under review with manuscript number JSA-D-11-00103. 

7.1 Energy- and Performance-Aware Genetic Algorithm 
We developed in UniMap an Energy- and performance-aware Genetic Algorithm (EGA). 
EGA is based on the Generational Genetic Algorithm (GGA) [61]. As compared to GGA, 
EGA implements an elitist mechanism. 
 EGA is developed for MxN 2D mesh NoCs but, it may be extended to work with 
other topologies as well. The algorithm uses a bit-energy analytical model for computing 
the NoC communication energy. It considers that Dimension Order Routing is employed 
but, it can also generate a deadlock- and livelock-free routing function using the turn [62] 
and odd even [63] models. Additionally, network bandwidth constraints may be 
considered. 

7.2 Elitist Evolutionary Strategy 
Elitist Evolutionary Strategy (EES) [59] is available in jMetal. We adapted this algorithm 
to our problem by using the same energy-aware fitness function like in the EGA case. 
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7.3 Developing Problem Knowledge Crossovers 
This section presents the crossover operators used in this research. We work with 
crossover operators for permutation problems. There are many such operators in literature 
(order, inversion, cycle etc.) [64]. We used Position Based Crossover and Partially 
Mapped Crossover. Position Based Crossover (PB) [65] aims keeping absolute position 
information during the recombination process. Partially Mapped Crossover (PMX) [66] 
tries to preserve genes’ order, adjacency and position as much as possible. PMX is one of 
the most used crossover operators for permutation problems [59]. 

Next, we present two new crossover operators that we propose for the Network-
on-Chip application mapping problem. 

7.3.1 NoC Position Based Crossover (NPB) 
NoC Position Based Crossover (NPB) extends PB so that the cores that are kept fixed are 
not selected randomly. We rather keep fixed the hot spot cores, i.e. the cores which 
communicate the most data.  
 Our approach, based on hot spots, is similar to the approach from [67]. The 
difference is that, we do not simply swap the hot spot core with a randomly chosen core; 
we rather fix the first half of the most communicating cores. While the crossover from 
[67] behaves as a swap mutation, NPB acts as a Position Based crossover, with context-
awareness.  

7.3.2 Mapping Similarity Crossover (MS) 
Our developed Mapping Similarity crossover (MS) has the purpose of identifying the 
topological similarities between two (parent) mappings and replicating them in the 
offspring. MS has two phases. The first phase tries to identify the mapping similarities 
between the two mappings. By doing so, the common characteristics of the two mappings 
are identified. The cores mapped in a similar way in both parents are mapped the same in 
the two children: child 1 maps the similar cores like parent 1 and child 2, like parent 2. 
We should point out that the offspring keep the common characteristics of their parents, 
either good or bad. The goal of the first MS phase is to decide which genes the offspring 
inherit from their parents. MS attempts to improve the offspring through a secondary 
phase, which performs a greedy mapping for the rest of the genes. This phase tries to 
raise the children fitness by rearranging the cores which are not mapped similarly, hoping 
they will be placed better with respect to the similar cores. 

We argue our MS crossover operator does not simply act as a swap mutation 
operator like in the research of Ascia et al. [64], [68], [67]. MS instead tries to identify 
mapping similarities, which are inherited from both parents. This emphasizes the 
crossover character.  

7.4 Mutation Operators 
This section presents the two mutation operators used in this research. We chose to work 
with swap mutation, which is a very common genetic operator in permutation problems. 
It simply interchanges two randomly selected genes. 
 Using our developed Optimized Simulated Annealing algorithm as a mutation 
operator we obtain a hybrid algorithm: an Evolutionary Algorithm which incorporates a 
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Simulated Annealing technique. OSA performs a context-aware mapping and outputs two 
cores which must be swapped. It performs an iteration each time it gets called by the 
Evolutionary Algorithm. When the number of iterations reaches OSA’s number of 
iterations per temperature level, the annealing temperature is decreased. 
 By using OSA as a mutation operator, we propose using hybrid algorithms for 
NoC application mapping. More precisely, we have a meta-heuristic, with an 
Evolutionary Algorithm as the main algorithm. The EA encapsulates a NoC specific 
algorithm, as a mutation operator (OSA). This approach allows us to benefit from the 
intrinsic parallelism that EAs contain. Also, the exploration has context-awareness, 
through the proposed mutation. The mutation may be performed by any algorithm for 
NoC application mapping. Any EA using a mutation operator may be used. 

7.5 Multi-objective Optimization 
NoC communication energy is minimized by placing the communicating IP cores as 
close as possible, onto the NoC tiles. Since we are interested to evaluate the performance 
of the genetic operators used in this research, we do a multi-objective optimization, too. 
Our second objective is to do a thermal-aware placement of the IP cores. Uniformly 
distributing the IP cores’ temperature across the network leads to the minimization of the 
hotspot temperature. Two IP cores that consume significant power should be placed at a 
greater distance from one another. However, this means our thermal balance objective is 
in contradiction with our energy objective. 

7.6  Experimental Results 
We present next only the most representative results obtained with our research on 
domain-knowledge evolutionary algorithms for Network-on-Chip application mapping. 
Our entire set of results is available in [69]. 

We start by measuring the mapping cost found for each benchmark. Since (in 
order to improve the accuracy of our results) we map the same application multiple times, 
we obtain an average mapping cost (energy). We get such average cost for every 
evolutionary algorithm, with every crossover operator and for each mutation probability. 
For EGA with MS crossover and OSA mutation, we also limit the similarity function to 
the IP cores that are one – EGA-MS-OSA (1) – or two hops away – EGA-MS-OSA (2). 
 We work with the metric that we call Normalized Absolute Deviation (NAD) 
from the minimum  (in this case the minimum average energy). This metric is based on 
the statistic absolute deviation (AD) metric. Because we deal with a minimization 
problem, we consider the absolute deviation from the minimum average cost from the 
entire data set (Xb). Then, we normalize AD by dividing it to }max{ bX (the maximum 

average cost from the entire data set). Therefore, the normalized absolute deviation (of 

data point bb Xx
m

∈ ) from the minimum is
}max{

}min{

b

bb
b X

Xx
NAD m

m

−
= . The index bm marks a 

benchmark evaluated with an algorithm with at a certain mutation probability. For each 
benchmark, we obtain its NAD, at every mutation rate, using the above formula. The data 
set Xb contains the average mapping energies obtained by all evolutionary algorithms, for 
the specified benchmark. At each mutation level, we average the NADs of all our 
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benchmarks. Therefore, we have
B

NADNADNAD
NADAverage mmm B

m

+++
=

...21 , with B 

being the number of benchmarks and m the mutation probability 
( %}100%,...,20%,10{∈m ). We use this metric because directly comparing the average 
energies obtained for different applications is infeasible since each application has its 
own energy domain (which usually differs significantly). 
 Fig. 20 presents how much the average mapping cost deviates from the minimum 
average cost, found by all algorithms. We show the results obtained only for the big 
benchmarks (VOPD 4x, all-mocsyn, 97-cores, 131-cores and 215-cores) because our 
evolutionary algorithms perform similarly on the rest of the benchmarks (in terms of 
average mapping cost). For every algorithm, only the point corresponding to the mutation 
probability where it performed best is shown. 
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Fig. 20 Algorithms’ comparison based on their average normalized absolute deviation, from their 

common minimum average cost (only big benchmarks) 
 
It may be easily observed that all algorithms perform significantly better with OSA 
mutation than with swap mutation. EES-OSA has the smallest deviation, among all 
algorithms, followed by EGA-PMX-OSA. EGA-MS-OSA is the next best performing 
algorithm in this case. We even notice a slightly better performance for EGA-MS-OSA 
(1) (1.64% deviation) than for EGA-MS-OSA (1.77% deviation). However, EGA-MS-
OSA (2) performs much worse (3.21% deviation, at 100% mutation probability). After 
EGA-MS-OSA we have EGA-OSA and EGA-NPB-OSA. EGA-OSA is the algorithm 
that gives the smallest deviation at the lowest mutation rate: 30%. EGA-NPB-OSA is 
better than EGA-MS-SWAP. Still, EGA-MS-SWAP clearly beats OSA, making MS the 
only crossover than outmatched OSA with both mutation operators. Mapping Similarity 
is the only crossover operator that performed well regardless of the mutation operator. PB 
crossover also does not provide bad results but, MS is clearly better (EGA-SWAP has a 
3.52% deviation, with only 0.02% smaller than OSA’s deviation). The performance of 
our other crossover operator, NPB, is not good when we compare it with PB. In both 
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cases (OSA or swap mutations), NPB performs worse than PB. However, we observed 
(on all benchmarks) that NPB performed better and better as mutation grew. It performed 
best at 100% mutation probability (similarly to PMX). PB performed best at 80% 
mutation (on all benchmarks). Raising the mutation made PB perform worse. EGA with 
MS performed best at 50% - 60% mutation rate, on all benchmarks. We may conclude 
that MS is the crossover operator that contributes the most at obtaining a good average 
mapping cost. The rest of the operators rely significantly more on the mutation operator. 
 In conclusion, in terms of average mapping cost, the Elitist Evolutionary Strategy 
with OSA mutation performs the best. The Energy Aware Genetic algorithm has the best 
behavior with OSA mutation and with PMX crossover. Our developed Mapping 
Similarity crossover gives similar results: its normalized absolute deviation is with only 
0.25% worse than the one of PMX. NPB performs worse on the big benchmarks. Its 
deviation is with 1% higher that the one of PMX. 

Next, we are interested to find how good are the best mappings found by each 
algorithm. In order to compare the best solutions found by all algorithms, we have 
identified for each application the best solution found by all algorithms. Then, for each 
application, with each algorithm and mutation probability, we have computed the 
additional energy (AE) its best mapping consumes, with respect to the best solution found 
by all algorithms. Using the same notation like for NAD computation, we define the 

Additional Energy metric as
mb

m

m x

Xx
AE bb

b

}min{ '−
= . In this case however, we work with a 

different data set. '
bX contains the minimum mapping energies (not the average ones, like 

in the previous case). Finally, like for average NAD, we averaged the additional energies 
for all benchmarks. The following chart presents these results. We show for every 
algorithm the value at the mutation level where it obtained the lowest average additional 
energy. 
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Fig. 21 Average additional energy consumed by the best mappings found by each algorithm, 

compared to the best mappings found by all algorithms 
 
EGA-MS-OSA is the algorithm that has the most mappings that are the best. On average, 
the best mappings found with this algorithm introduce just 0.29% additional energy. Very 



Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip 
Application Mapping 

35 

close to this result is EES-OSA, with 0.3% additional energy. After EGA-PMX-OSA 
(0.36%), follow EGA-NPB-OSA and EGA-MS-OSA (1), both with 0.52% additional 
energy. Note that all the algorithms except EES-SWAP and EGA-PMX-SWAP find, on 
average, better mappings than OSA. This chart also shows that swap mutation produces 
worse mappings than OSA mutation, regardless the algorithm. However, there is an 
exception: EGA-MS-OSA (2) does not produce better mappings than all algorithms with 
swap mutation. 

We conclude our solution quality based analysis by showing how often each 
algorithm manages to reach the best solution. We refer to the best solution found by all 
algorithms, not to the best solution each algorithm found. Hence, it is possible an 
algorithm has a zero best solution percentage. We define the Averaged Best Solution 

percentage at mutation rate m as [%]
...21

B

BSBSBS
BSAverage mmm B

m

+++
= . 

mbBS is 

the Best Solution percentage for benchmark b, at mutation level m. It represents how 
many times an algorithm finds the best mapping, found by all algorithms. 
 On the big benchmarks, OSA is unable to find the best solution. Also, not all of 
the evolutionary algorithms manage to reach the best solution. This may be seen in the 
following figure. 
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Fig. 22 Average best solution percentage on big benchmarks 

 
EGA-NPB-OSA is the algorithm that has the highest best solution percentage, which is 
22% at 90% mutation probability. EES-OSA and EGA-OSA have a value of 20%. Than, 
with just 2%, we have EGA-PMX-OSA, EGA-MS-OSA and EGA-MS-SWAP. We 
notice all the algorithms using swap mutation are unable to reach the best solution. The 
only exception is EGA-MS-SWAP. 
 Our conclusion is that NPB crossover gives the best solution percentage, on the 
big benchmarks. Mapping Similarity and PMX crossovers give a similar best solution 
percentage. OSA mutation is essential for EES because with swap mutation EES 
performs worse even than EGA with NPB crossover and swap mutation.  
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Regarding the optimal mutation probability, we observed there are algorithms, 
like EGA-NPB-SWAP, for which we obtained exactly the same mutation rate. However, 
in general there is no ideal mutation probability. Our experiments indicate the optimal 
mutation probability may vary from 20% up to 100%. For EGA-MS-OSA, we got the 
same optimal mutation probability in terms of average and best mapping cost. We 
conclude that mutation probability is application and algorithm dependent. The lowest 
mutation rate is consistently encountered when working with our developed Mapping 
Similarity crossover. This indicates MS is the crossover operator that relies the least on 
mutation to find the best NoC application mapping. We tried to limit the similarity 
function of MS by considering only the cores which are one or two hops apart in the 
NoC. Overall, we did not obtain significantly better results. EGA-MS-OSA (1) and EGA-
MS-OSA (2) require a higher mutation probability to function optimally. 

We present next how some of our algorithms converge in time. Since the previous 
results showed us that OSA mutation gives better results than swap mutation, we focus 
only on these algorithms: EGA-OSA, EGA-PMX-OSA, EGA-NPB-OSA, EGA-MS-OSA 
and EES-OSA. We ran each of the five algorithms for 1000 generations per application. 
To improve the accuracy of our simulations, we ran each application for 100 times (by 
setting the random number generator seed from 1 to 100). Finally, we averaged the 
energy cost of all 100 mappings per application and per generation. We worked with the 
mutation values determined by our average cost analysis. 

Fig. 23 shows how the five algorithms converge on our biggest benchmark. We 
mention that for all the other benchmarks we obtained the same behavior, as we will 
detail next. 
 

 
Fig. 23 Algorithms’ convergence for 215-cores benchmark 

 
All algorithms manage to reduce the mapping energy significantly, within the first 100 
generations. EGA-OSA has the lowest convergence speed. EGA-PMX-OSA, EGA-NPB-
OSA and EES-OSA behave approximately the same. EGA-MS-OSA is the algorithm that 
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converges the fastest during the first generations. After that, its convergence speed 
decreases and it is outrun by EGA-PMX-OSA, EGA-NPB-OSA and EES-OSA. We 
believe this is justified by the greedy approach from the second phase of our Mapping 
Similarity crossover. 
 We measured when each algorithm reaches its best solution during the 1000 
generations, for each benchmark and we averaged the results. EGA-OSA converges in 
732 generations. It requires the most number of generations to obtain its mapping with 
the best communication energy. EGA-MS-OSA converges in 562 generations. 
Algorithms EGA-PMX-OSA, EGA-NPB-OSA and EES-OSA require 475 generations. 
EES-OSA is the algorithm that, on average, has the fastest convergence speed (424 
generations). 

Finally, we switch from a single objective to multi-objective Network-on-Chip 
application mapping. Besides minimizing communication energy, we are now also 
interested in obtaining a thermal balanced NoC design. Using NSGA-II and SPEA2 
genetic algorithms implemented in the jMetal library, augmented with all our genetic 
operators, we evaluated NoC mappings for all-mocsyn. This is the benchmark that 
contains all E3S applications. For E3S we know how much power the IP cores consume 
to execute a particular task. Each algorithm ran once, with each crossover – mutation 
combination, for 1000 generations. Each time we started from the same initial population. 
We used the optimal mutation probabilities determined by our average mapping cost 
analysis. 
 Fig. 24 shows, for every algorithm, the (normalized) hypervolume [60] obtained 
at each generation. For a minimization problem (like ours), the hypervolume is defined as 
the volume enclosed by the Pareto front and a reference point. The coordinates of this 
point are determined by the maximum values of the objectives. The values are also 
normalized using the (constant) volume between the coordinate systems’ origin and the 
hypervolume reference point. 
 



Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip 
Application Mapping 

38 

 
Fig. 24 (Normalized) hypervolumes, for all evaluated algorithms 

 
The hypervolume grows significantly until the first 200 – 300 generations, for all 
algorithms. Then, it keeps growing slowly until the last generation. This indicates how 
the algorithms converge. The algorithms using our developed Mapping Similarity 
crossover have a very fast convergence speed within the first 100 generations. However, 
in the end, their hypervolumes are the smallest. This indicates MS leads to the worse 
performance in this multi-objective case. However, if we want fast results, then this will 
be a suitable crossover. Looking at the hypervolume values within the last generations, 
we ordered the algorithms. This order may be seen in the chart’s legend. It may be 
observed that PMX performs the best. It is followed by NPB, PB and finally MS. We also 
observed that both NSGA-II and SPEA2 performed better with PMX and swap mutation. 
The performance with OSA mutation was worse. These multi-objective results appear to 
be in contradiction with our previous single-objective results. The explanation resides in 
the fact that our two objectives are in a mutual contradiction. OSA mutation, MS and 
NPB crossover work to optimize energy but, this implicitly leads to worsening the NoC 
mappings in terms of thermal balance. NPB is more suitable than MS (in this case) 
because it just identifies hot spot cores, in terms of energy. However, they may also be in 
terms of thermal balance because a highly communicating core might also have a higher 
temperature. 
 Fig. 25 shows the Pareto front obtained in the last generation by combining the 
Pareto fronts of all the evaluated algorithms. This combined Pareto front holds only the 
non-dominated individuals from all the merged Pareto fronts. 
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Fig. 25 Combined Pareto front (generation 1000) 

 
It may be seen that PMX is the single crossover that leads to the best solutions, found by 
either NSGA-II or SPEA2. We also observe there are a lot of good solutions in terms of 
energy. All these mappings were found using OSA mutation. With swap mutation, we 
managed to find three good solutions in terms of thermal balance. The significantly 
higher number of good energy-biased solutions indicates the fact we tried to optimize 
only energy with NoC application mapping knowledge. Probably using a crossover which 
also optimized energy was too much bias towards a single objective. This is how we 
explain PMX was the best performing crossover. Anyway, PMX was one of the best 
performing crossovers in the single-objective case, too. 
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8 Application Driven Automatic Design Space 
Exploration for System-on-Chip Architectures 

 
In this chapter we propose a method for performing an application driven automatic 
design space exploration for System-on-Chip (SoC) architectures. We integrate UniMap 
with a Framework for Automatic Design Space Exploration (FADSE) [70] with the 
purpose of automatically finding the best SoC design for any given application, in a 
multi-objective way. Our objectives are: SoC energy consumption, SoC area and 
application runtime. 

Using UniMap’s features, we simulate an entire computing system, consisting of 
tens of heterogeneous IP cores that are mapped onto the nodes of a Network-on-Chip. 

FADSE automatically configures this System-on-Chip. It then simulates it using 
UniMap’s simulator and gives the simulation results to the DSE algorithm that drives the 
search process. 

We show a feasible DSE workflow that meets our requirements and we identify 
the most suitable SoC architectures, for a given application, in terms of energy, area and 
runtime. We also compare four DSE multi-objective algorithms (two genetics and two 
bio-inspired) with the purpose of identifying the algorithm that performs the best. 

8.1 Framework for Automatic Design Space Exploration 
The Framework for Automatic Design Space Exploration (FADSE) [71], [72] is 
developed by Horia Calborean from “Lucian Blaga” University of Sibiu, Romania, as 
part of his PhD thesis [70]. FADSE is a client-server tool that includes many state of the 
art algorithms through jMetal [73]. FADSE was successfully used for a multi-objective, 
hardware-software co-design exploration of the design space for a superscalar system 
[74], [75].  

8.2 Design Space Exploration Workflow 
Our DSE workflow starts with mapping applications onto NoC architectures using 
UniMap’s algorithms. The mappings are evaluated by estimating the NoC 
communication energy with an analytical model. The best solutions found are saved into 
a database. 
 For each application, FADSE searches for the best SoC design by considering the 
first ten best mappings (a higher number of best mappings may be used depending on 
how many resources are available). Note that we select these mappings from all best 
mappings found by all UniMap mapping algorithms: Simulated Annealing, Branch and 
Bound, Optimized Simulated Annealing and Elitist Genetic Algorithm and Elitist 
Evolutionary Strategy, with all their variants, evaluated in Chapter  7. 
 Then we configure FADSE to start a DSE process, driven by a multi-objective 
algorithm. FADSE evaluates different System-on-Chip architectures. Firstly, it selects the 
type for each IP core. The given mapping already contains information about what IP 
core will execute what task. However, FADSE will try with other compatible IP cores as 
well. Any IP core capable of executing a task is considered compatible with that task. 
Note that the analytical model used for obtaining the best mappings does not account for 
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IP core types. Secondly, it instantiates a SoC architecture by placing the selected IP cores 
onto the nodes of a NoC that it configures. Finally, it calls UniMap’s ns-3 NoC simulator. 
We model the tasks’ execution using Finite State Machines. The network 
communications are created using our network traffic generator. ns-3 NoC measures 
application runtime, SoC energy and SoC area. These are the three objectives of our DSE 
workflow. 
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Fig. 26 Application driven DSE workflow for SoC designs 

 
We use the E3S [44] IP core library, which provides data about the power 

consumed by each core while executing a certain task and while idle and the area 
occupied by every core. 

For our NoC architecture, power and area metrics are measured using ORION 2.0 
[45], which is integrated with UniMap’s NoC simulator (see section  4.2). We work with 
the Network-on-Chip total power, which includes leakage and dynamic power for routers 
and links. Similarly, NoC area is the sum of routers and links area. 

We measure application runtime by running the application for a specified 
number of CTG iterations. We determine the number of CTG iterations empirically, so 
that the simulations run fast enough so that our DSE process ends in a feasible amount of 
time. 
 The output of this workflow is a Pareto front with the “best” (near optimal) SoC 
configurations, for a particular application. 
 In the next section we give details about how exactly we performed the 
simulations, on which benchmarks, what architectural parameters we varied and how 
UniMap and FADSE were configured. We must point out that, during the workflow, the 
NoC topology is kept unchanged. This is because the topology is basically the single 
NoC architectural element used by the mapping algorithms. Changing it would lead to 
inconsistencies, i.e. doing and comparing mappings for different NoCs. Obviously, our 
workflow may also be applied for different NoC topologies. By doing so we could also 



Application Driven Automatic Design Space Exploration for System-on-Chip 
Architectures 

42 

determine the most suitable NoC topology. However, this would require adapting our 
application mapping algorithms for these other NoC topologies. Only then we will be 
able to obtain the best mappings for other NoC topologies. 

8.3 Experimental Results 
We show next some preliminary results obtained with our previously presented 
application driven design space exploration technique for System-on-Chip architectures. 
We managed to explore all ten best mappings just for the telecom benchmark. For the rest 
of benchmarks we explored only the first best mapping. 

We start with the telecom DSE. In the next figure we use the hypervolume metric 
to show how our four DSE algorithms progress while searching for the best SoC designs 
for the telecom benchmark. We obtained hypervolumes for each DSE algorithm, on every 
one of the ten telecom mappings. Then we computed the average hypervolume. 
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Fig. 27 Average hypervolumes over all ten best telecom mappings 
 
It can be seen that the two genetic algorithms (NSGA-II and SPEA2) obtained the best 
hypervolumes. NSGA-II has a slightly faster convergence speed than SPEA2. In the last 
ten generations, both of them saturate; they no longer find significantly better solutions. 
SMPSO performs better than OMOPSO but, both PSO algorithms perform worse than 
the genetic algorithms in terms of solution quality (we used the same hypervolume 
reference point). However, they have the fastest convergence speed. Only after 8-9 
generations the genetics recover and surpass the PSO algorithms. 

We also compared the four algorithms using the coverage metric (results are 
omitted due to space constraints). We concluded that SPEA2 has the best overall results. 
The following figure shows the Pareto front obtained with SPEA2, by combining the 
Pareto fronts from all ten telecom mappings. 
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Fig. 28 SPEA2 Pareto front, for telecom 

 
We observe that the Pareto front contains solutions from all eight of the ten best telecom 
mappings. We obtained the best energy consumption with the eight mapping. The 
smallest area was given by mappings three and five. With exactly the same area, the third 
mapping has a better energy, while the fifth has a better application runtime. Finally, the 
lowest application runtime was found on a SoC design corresponding to mapping eight. 
 It is interesting to see that we did not obtain the best energy with the first best 
mapping, which analytically gave us the lowest NoC communication energy. This can be 
due to several facts. Firstly, we analytically estimated only the NoC communication 
energy. With this approach we compute the entire SoC energy (IP cores energy is also 
included). Secondly, the analytical model is unable to capture the dynamic network 
effects (network congestions). Thirdly, FADSE does not obviously perform an exhaustive 
search. It is possible that we might get better energy results with mapping one than with 
mapping eight. This shows the need to perform better exploration of the design space. 
Using domain-knowledge to constrain the search space and applying fuzzy rules are two 
approaches that could improve the DSE technique [70]. 
 Finally, we combined all the Pareto fronts obtained with all our algorithms, for all 
ten telecom mappings. 
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Fig. 29 Combined Pareto front for telecom benchmark 

 
It can be observed that all the solutions found with SMPSO and OMOPSO are dominated 
by the solutions found with the genetic algorithms. While in terms of SoC area the best 
solutions are the ones found with SPEA2 (with mappings 3 and 5), in terms of energy and 
runtime, NSGA-II found, with mapping six, better results than SPEA2 (with mapping 
eight). 
 The following table summarizes the best SoC designs found for the telecom 
application. Due to space constraints, we do not show the 30 IP cores selected for every 
SoC architecture. 
 

NoC parameters 
Objective Algorithm Map

ping Frequency 
[MHz] 

Buffer 
size 

[flits] 

Flit 
size 

[bytes] 

Packet 
size 

[flits] 

Routi
ng 

SoC 
energy 
[Joule] 

SoC 
area 

[mm2] 

Applicati
on 

runtime 
[ms] 

Energy NSGA-II 6 100 4 4 10 YX 0.09516 50.11 46.1144 
Area SPEA2 5 200 1 4 10 XY 0.15818 37.37 46.1132 
Area SPEA2 3 400 1 4 10 YX 0.16793 37.37 46.1111 

Runtime NSGA-II 6 900 4 32 6 YX 0.34191 81.22 45.4 

 
The lowest energy was obtained (in accordance with our intuition) when the NoC 
operated at the lowest frequency allowed by our DSE workflow. The SoCs with the 
smallest area use some of the smallest IP cores. Also, the NoC buffers are only one flit in 
size. As compared with the best energy and runtime SoC designs, the two area designs 
use only 25% NoC buffering resources. The two designs with the smallest area 
essentially differ by the NoC frequency. The faster one uses a NoC that is twice faster. 
The SoC with the best runtime runs telecom with more than half a millisecond than the 
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other three SoCs, which are differentiated in terms of speed by only a few fractions of a 
microsecond. The best runtime SoC architecture also requires a much faster NoC. It also 
operates with bigger packets. All these reflect on considerably higher energy and bigger 
area. Finally, we also observe that routing also influences the architecture’s performance. 
Our best SoC designs for telecom use both XY and YX routing protocols. 

Now we continue with the MPEG-4 DSE. The following figure presents the 
hypervolume of each DSE algorithm, for the best MPEG-4 mapping found analytically. 
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Fig. 30 Hypervolumes for the first best MPEG-4 mapping 
 
The results obtained for telecom are consistent with the ones presented here. Again the 
two genetic algorithms perform better than the particle swarm optimization algorithms. 
NSGA-II converges faster than SPEA2. In terms of quality of results it seems that 
NSGA-II is the best. Again, SMPSO performed better than OMOPSO. Like for telecom, 
MPEG-4 results show us that it matters more the class the algorithm belongs to 
(evolutionary or bio-inspired), rather than the specific implementation. 

We computed the coverage, trying to choose the best algorithm from each class. 
The results are presented in Fig. 31 and Fig. 32.  
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Fig. 31 Coverage comparison between NSGA-II and SPEA2, for MPEG-4 
 
For the first generations no clear distinction can be made between the two algorithms. 
However, looking at the last generations, we conclude that there are more individuals 
produced by SPEA2 that dominate the NSGA-II individuals. This contradicts the 
hypervolume chart where NSGA-II seemed to perform better. We thoroughly analyzed 
the Pareto fronts obtained by the two genetic algorithms. Some of the solutions 
discovered by NSGA-II are better than the ones obtained by SPEA2 and some are worse 
(in accordance with the coverage metric). It is hard to establish the best one because it 
depends on the requirements of the designer. Still, the results obtained by NSGA-II 
seemed a little more spread in the objective space. 
 The same behavior can be observed between OMOPSO and SMPSO. SMPSO 
performed better from the hypervolume point of view, but here OMOPSO is the best. 
Again, we analyzed the Pareto fronts approximations and from our point of view SMPSO 
had better results. We emphasize that this is a subjective appreciation and for other 
designers the order might be changed. 
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Fig. 32 Coverage comparison between SMPSO and OMOPSO, for MPEG-4 
 
For our last comparison we selected the best algorithms from the coverage point of view: 
SPEA2 and OMOPSO. In the next figure we present the coverage comparison between 
the two algorithms. SPEA2 is clearly the best, by dominating almost 100% of the 
individuals found by OMOSPO. OMOSPO does not dominate almost any individuals 
obtained by the genetic algorithm. It is interesting to observe that OMOPSO is better for 
the first generations. This is because of the faster convergence speed of the PSO 
algorithms. 
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Fig. 33 Coverage comparison between SPEA2 and OMOPSO, for MPEG-4 
 
 The following figure presents the most spread Pareto front, which was obtained 
by the NSGA-II algorithm. Through interpolation we also obtained a surface grid that 
gives us a better view of the Pareto surface. 
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Fig. 34 MEPG-4 NSGA-II Pareto front 

 
As expected, it can be observed that there is no SoC design for the MPEG-4 application 
that is best for all three objectives. The fastest designs consume more energy and occupy 
more area. The slowest architectures consume less energy and need less area. In between 
we have a lot of solutions that are better for energy and worse for area and vice versa. 

We conclude this preliminary research by presenting the hypervolumes obtained 
for the first best analytical mapping of H.264 and VOPD benchmarks. 
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Fig. 35 Hypervolumes for the first best H.264 mapping 
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Fig. 36 Hypervolumes for the first best VOPD mapping 
 
These H.264 and VOPD hypervolume results are in correlation with our previous results. 
Our conclusion is that the genetic algorithms find better solutions than the particle swarm 
optimization methods. The PSO algorithms manage to converge faster only for the H.264 
decoder. For VOPD, SMPSO performs clearly better than OMOPSO. We also observe an 
unsteady convergence speed for the PSOs. For a large number of generations their 
evolution is insignificant. Then, they manage to find at least one significantly better 
individual, which makes their hypervolume grow noticeable. 
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9 Conclusions and Further Work 
 
This work addresses the Network-on-Chip application mapping problem. After we 
introduced the novel Network-on-Chip paradigm in Chapter  0, we focused on the 
mapping problem. Chapter  3 presents the problem along with a state of the art on the 
heuristic algorithms used to address it. In Chapter  4 we show our developed unified 
framework for the evaluation and optimization of Network-on-Chip application mapping 
algorithms. In Chapter  5 we presented the benchmarks used in our research, in this 
emerging NoC research field that still lacks a standard benchmarking methodology. With 
UniMap, we evaluated and optimized a simulated annealing algorithm using a domain-
knowledge approach (Chapter  6). We also evaluated and optimized evolutionary 
algorithms by proposing problem aware genetic operators (Chapter  7). Finally, in Chapter 
 8, we proposed and used a design space exploration workflow for an application driven 
automatic design space exploration for Systems-on-Chip. Our algorithms’ evaluations 
were performed using both analytical models and simulators. We considered single and 
multi-objective approaches. 
More precisely, this thesis makes the following contributions: 

� An introduction to Network-on-Chip architectures with an emphasis on the most 
common network topologies and routing protocols used in this research field; 

� Taxonomy for the classification of Network-on-Chip application mapping 
algorithms; 

� State of the art regarding algorithms for Network-on-Chip application mapping; 
� UniMap: a developed unified framework for the evaluation and optimization of 

NoC application mapping algorithms; 
� UniMap runs on High Performance Computing Systems using job schedulers to 

automatically and optimally distribute simulations; 
� Common model based on XML schemas for representing real applications and 

networks; 
� UniMap integrates state of the art NoC application mapping algorithms like 

Simulated Annealing and Branch and Bound; 
� UniMap integrates jMetal, a library with single objective and multi-objective state 

of the art evolutionary algorithms, which can be used as application mapping 
algorithms; 

� ns-3 NoC, our developed Network-on-Chip simulator, with two router 
architectures, three routing protocols, three switching mechanisms and k-ary d-
cube topologies; 

� Network traffic generator based on communication patterns of real applications, 
described through Communication Task Graphs and Application Characterization 
Graphs; 

� ns-3 NoC integrates ORION 2.0, a state of the art tool for Network-on-Chip 
power consumption and area estimation; 

� Using ns-3 NoC, we showed that the Irvine architecture helps at decreasing the 
network congestion.  The network is significantly less congested when data flits 
are transmitted faster than head flits; 
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� With ns-3 NoC, we showed how increasing the network buffers’ size improves 
the NoC’s average packet latency; 

� Using ns-3 NoC, we evaluated different network topologies: 2D mesh, 2D torus, 
3D mesh, 3D torus and hypercube. We concluded that topologies like tori and 
hypercube can give better NoC performance than meshes can; 

� UniMap integrates the E3S benchmark suite and some of the most used CTGs and 
APCGs available in literature. Because NoC benchmarking is still work in 
progress, we effectively created our own benchmark suite; 

� We propose and use for Network-on-Chip benchmarking two communication 
patterns taken from a H.264 decoder system available in the research community; 

� Using domain-knowledge, we developed an Optimized Simulated Annealing 
(OSA) algorithm. It performs a dynamic and implicit core clustering and limits 
the number of iterations per annealing temperature based on the given application 
and network. 

� We showed that Simulated Annealing can be feasible for NoC application 
mapping when domain-knowledge is used. OSA is approximately 99% faster than 
a generic Simulated Annealing algorithm, without losing the solution quality; 

� The results obtained with OSA showed that Simulated Annealing is feasible for 
NoC 2D meshes larger than 10x10. Previous research stated the contrary; 

� OSA is comparable to Branch and Bound in terms of memory consumption and 
speed. It mapped 97 cores on a 10x10 2D mesh in a time slower by only 3% than 
the time required by Branch and Bound; 

� As the problem size increases, OSA gives significantly better solutions than 
Branch and Bound. The mappings found with Branch and Bound were with more 
than 70% worse than OSA’s mappings when working with more than 64 IP cores; 

� We showed Branch and Bound’s limitations. This algorithm was unable to map 
an application with 215 cores, onto a 15x15 NoC, because more than 98% of the 
search space was pruned; 

� We developed an Elitist energy- and performance-aware Genetic Algorithm 
(EGA). EGA is integrated in jMetal; 

� We extended jMetal with the Position Based crossover; 
� We evaluated EGA and an Elitist Evolutionary Strategy (EES) using different 

genetic operators (four crossovers, two mutations => 12 algorithm variants); 
� We concluded that evolutionary algorithms are superior to algorithms like OSA, 

for NoCs with tens, hundreds of nodes. We found that, for the big benchmarks, all 
the best solutions were given by evolutionary algorithms (none by OSA); 

� We proposed a meta-heuristic algorithm consisting of an evolutionary algorithm 
that uses as mutation operator a state of the art application mapping algorithm; 

� EGA and EES work better with OSA mutation than with swap mutation. OSA 
integrated successfully into the Evolutionary Algorithms; 

� We designed two problem specific crossover operators: NoC Position Based and 
Mapping Similarity. NoC Position Based crossover improves the standard 
Position Based crossover for our problem. Mapping Similarity crossover 
exchanges information between the parent individuals. It does not simply work as 
a mutation operator, like the other state of the art NoC application mapping 
crossover operators do; 
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� With NoC Position Based crossover, EGA had the best solution percentage on the 
big benchmarks; 

� We found Mapping Similarity to be the crossover operator that contributes the 
most at obtaining a good mapping. It performed best at 50% - 60% mutation 
probability. The rest of crossovers required higher mutation rates; 

� We found EES to perform better than EGA. Although we managed to improve the 
genetic algorithm through our crossover operators, using an algorithm that works 
only with (context-aware) mutation proved to be better. Finding a suitable 
context-aware crossover for NoC application mapping is more difficult than 
finding an efficient context-aware mutation; 

� EES with OSA mutation was the algorithm that managed to converge the fastest; 
� Using two state of the art multi-objective algorithms (NSGA-II and SPEA2) with 

our genetic operators, we evaluated (with analytic models) the mappings in terms 
of NoC communication energy and NoC thermal balance. The two objectives are 
contradictory and, as such, our developed operators did not lead to the best 
performance. However, we did find the best solutions, in terms of energy, with 
OSA mutation. A suitable crossover operator for the NoC application mapping 
problem is even more difficult to find if we consider multi-objective optimization;  

� UniMap connects with the Framework for Automatic Design Space Exploration;  
� We proposed an application driven automatic Design Space Exploration 

technique for System-on-Chip architectures. The goal is that, for a given 
application, to automatically determine the best System-on-Chip design, with the 
following objectives: SoC energy, SoC area and application runtime; 

� Using our developed ns-3 NoC simulator and FADSE, we explored the NoC 
architectural space for different real applications; 

� We showed that the best analytical mappings are not necessarily the best ones 
when using a NoC simulator; 

� The genetic algorithms (NSGA-II and SPEA2) were clearly more suited for our 
design space exploration workflow than the particle swam optimization methods 
(SMPSO and OMOPSO). Still, the PSO algorithms converged faster. 

 
As future work, we intend to improve UniMap. We are interested in extracting 
communication patterns from parallel applications. The first step will be to integrate 
CETA tool. This will allow us to obtain Communication Task Graphs from shared 
memory parallel programs. The second step will be to similarly use an MPI library that 
allows intercepting the communications from message passing parallel applications. 

 Another direction for extending our unified framework is to implement other state 
of the art Network-on-Chip application mapping algorithms. For example, the 
comparisons between OSA and Cluster Simulated Annealing [57] runtimes are very 
likely to be unfair. This can be due to several reasons: (1) OSA is written in Java but, we 
do not know yet how CSA is implemented, (2) OSA is energy aware and uses the cost 
function from [25], while CSA is bandwidth and latency constrained, using the cost 
function from [76] and (3) CSA does not specify the number of generations per 
temperature level. 

Also, we consider further improving our developed NoC simulator. Improving the 
router architecture with virtual channels and allocators is an example. This will bring our 
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router implementation closer to real router designs. 
Regarding our developed crossover operators (see Section  7.3) they are suitable 

only for the communication energy objective. They must be adapted to work in a multi-
objective case. Even OSA mutation was designed only for energy minimization. 
Therefore, evaluation and optimization of such algorithms, in a multi-objective context 
will be more difficult. Using standard crossover and mutation operators simplifies the 
problem a lot but, such operators are not aware of the problem. 

We also plan to continue our research regarding application driven automatic 
design space exploration for System-on-Chip architectures (see Chapter  8). The presented 
results are still preliminary. We intend doing more simulations so that we identify the 
best SoC designs for applications other than telecom, too. We also intend to do a more 
accurate modeling of our SoC designs by increasing the accuracy with which we simulate 
the IP cores and by varying the NoC topology as well. As for the design space explorer, 
we intend to use more domain-knowledge so that we can constrain and better explore the 
huge architectural space. We believe our approach can be extended for performing 
automatic design space exploration for High Performance Computing systems. 
Finally, we refer to a research niche that we identified during this PhD thesis but, 
unfortunately we have not had enough time to exploit it, yet. We believe that Network-
on-Chip application mapping problem can be addressed using graph theory. More 
precisely, we refer to graph isomorphism, which is the problem of verifying if two 
graphs are actually the same. Two graphs A = (VA, EA) and N = (VN, EN) are isomorphic if 
and only if there is a bijective mapping NA VVM →: , between the graph nodes, such that 

the following equivalence is true: NAA EeMeMEeeVee ∈⇔∈∈∀ ))(),((),(:, 212121 . 

This means a unique mapping between the corresponding edges of the two graphs is 
required. For weighted graphs, the condition can be extended to include the weights as 
well. Subgraph isomorphism requires the mapping M to be only injective. Graph 
monomorphism is a weaker type of subgraph isomorphism. The equivalence relation 
must be just an implication ( NAA EeMeMEeeVee ∈⇒∈∈∀ ))(),((),(:, 212121 ). 

Considering the above definitions and that the two graphs (A and N) are an Application 
Characterization Graph (APCG) and, respectively, a NoC topology graph, the Network-
on-Chip application mapping problem can be viewed as a graph monomorphism problem. 
Indeed, it is mentioned in [77] that the quadratic assignment problem can be formulated 
as a graph monomorphism problem. Currently, there is no known polynomial-time 
algorithm for the monomorphism problem [78]. However, special graph types, like planar 
graphs, can theoretically be solved in a linear time [79]. Using the Boyer-Myrvold 
algorithm [80], we tested for planarity all the APCGs used in this work. All of them 
proved to be planar graphs. We also integrated in UniMap the VF2 [81] graph matching 
algorithm and used it to determine if an isomorphism exists between any APCG and its 
corresponding NoC topology graph. We found none but, this is understandable because 
we should search for monomorphisms, not for isomorphisms. We found little NoC 
research using this idea. Graph isomorphism is used in [82] to identify the isomorphically 
unique NoC topology graphs. VF2 algorithm is used in [83] to perform subgraph 
isomorphism in order to decompose an APCG into a set of predefined communication 
pattern graphs. We believe approaching the NoC application mapping problem as a graph 
monomorphism problem is worth researching. 
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