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Rezumat

in zilele noastre, tendjele tehnologice au determinat arhitecturile de uwlatoare %
ajung la ga-numitulpower wall Datori& continuei migorari a tranzistorilor, densitatea
de putere pe centimetrdtpat a ajuns la limita superigaDin aceast cauz, arhitegii de
calculatoare au haat s inceteze Tmbuitatirea performatei designurilor acestora prin
intermediul scairii frecvenei. In loc de aceasta, mai multe procesoare swasiafe pe
acelai chip. Sistemelemulticore si manycoreofera o performagi crescui fata de
arhitecturile cu un singucore (nucleu de procesare), prin efectuarea de prozesar
paraleii. De asemenea, arhitecturile de calculator specgEntru aplicgi imbunitatesc
performana prin utilizarea de procesoare eterogene in lceldr omogene. Evident,
astfel de arhitecturi trebuiea die interconectate pentru a comunica. Potrivitiwma
HIPEAC [1], in momentul de fa comunicarea defigee performata. Reelele de
interconectare au o foarte mare impotfiaCele bazate pe magistrale transmisie (bus)
nu sunt potrivite pentru sistemetrilticoresi manycorepentru @ ele nu scaleaz?2].

Dupa anul 2000, reele interconectate pehip, numite arhitecturiNetwork-on-
Chip (NoC), au fost propuse drept o alternatiezabik pentru reelele bus. Relele NoC
au avantaje importante cum ar fi modularitageacalabilitatea, dar sunt extrem de
limitate Tn resurse. Ca urmare, existulte probleme de cercetare in domeniul NoC [3].

Maparea apliaglor pe arhitecturi de tipuNetwork-on-Chipeste una dintre cele
mai oneroase probleme (NP comp)etin aceadt zori de cercetare. De vreme ce o
abordare exhaustiveste nefezali] pentru aceastprobleni sunt folosii algoritmi
euristici. Scopul acestei teze esteeyvaluezei sa optimizeze algoritmi (mono-obiectiv
multi-obiectiv) pentru maparea apligdor pe arhitecturi de tipul Network-on-Chip

Primul obiectiv al acestei teze este s prezinte stadiul actual al algoritmilor
proiectai pentru problema mapi aplicgiilor pe arhitecturi Network-on-Chip. Apoi,
propunem de asemenea o taxonomie pentriiadgoritmi.

Zona de cercetare a arhitecturiletwork-on-Chipeste relativ nou Ca atare,
unelte puternicgi mature sunt Incasteptate. Din catgtim, la aceadtdat nu exisi un
cadru unitaropen source(gratuit) pentru evaluareg optimizarea algoritmilor pentru
maparea apligalor pe arhitecturi de tipuNetwork-on-ChipCel de al doilea obiectiv al
nostru este aproiecim un cadru comun pentru evaluarggaoptimizarea algoritmilor
pentru diferite majri pe arhitecturi multiple de tipiletwork-on-Chip

Al treilea obiectiv esteasoptimizaim si sa adapim un algoritm de tipuSimulated
Annealingpentru maparea apligidor pe NoCuri, folosind cunginte de domeniu.

Al patrulea obiectiv constin evaluaresgi optimizarea (folosind cuntinte de
domeniu) algoritmilor evolutivi pentru maparea muolbbiectiv a aplicgilor pe NoCuri.

In cele din urm, ne propunemaisefectdim o explorare automagt ghidas de
aplicgie, a spaului arhitectural pentru Sistemen Chip Aceasta implig sisteme
specifice aplicgilor, cu procesoare eterogene, utilizand @aeNoC parametrizabil

Aceasi tezi aduce contribgi originale Tn optimizarea sistemelor de tipul
Network-on-Chip Contribuim cu unelte pentru simulage benchmarking Optimizim
algoritmi pentru problema mapi aplicaiilor pe arhitecturi NoC. De asemenea,
propunem o metadde explorare automgtghidat de aplicéie, a spéului arhitectural
pentru Sistemen Chip
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1 Introduction

In the current days, the technology trends detexthoomputer architectures to reach the
so called power wall. Due to continuously shrinkingnsistors, the power density per
square centimeter reached the upper limit. Becatides, computer architects decided to
stop improving the performance of their designsniBans of frequency scaling. Rather
than this, more processors are placed on the shipeMulticore and manycore systems
provide better performance than single core archites, by performing parallel
processing. Also, application specific computehdaectures yield increased performance
by employing heterogeneous processors instead mbgenous processors. Obviously,
such architectures must be interconnected in otdecommunicate. According to
HIPEAC’s vision [1], nowadays communication definesrformance. Interconnection
networks are of high importance. Traditional busdshnetworks are not suitable for
multicores and manycores, because they do not jale

After year 2000 on chip interconnection netwodaled Network-on-Chip (NoC)
architectures have been proposed as a feasiblmatltee to bus networks. NoCs have
important advantages like modularity and scalabiitt, they are also extremely resource
limited. As such, there are many outstanding resegroblems in the NoC field [3].

Network-on-Chip application mapping is one of thmst onerous, NP-hard,
problems in this area of research. Since an exivauapproach is infeasible, heuristic
algorithms are used to address this probl€he scope of this thesis is to evaluate and
optimize Network-on-Chip application mapping alglems (using single-objective and
multi-objective approaches)

The first objective of this thesis is to realizest@ate of the art regarding the
algorithms designed for the Network-on-Chip applaa mapping problem. Then we
also propose a taxonomy for these algorithms.

The Network-on-Chip research field is relativelgwn Therefore powerful and
mature tools are still expected. To the best of lomowledge, there is not currently an
open source unified framework for the evaluatiod aptimization of Network-on-Chip
application mapping algorithms. Therefore, our secwmbjective is to design a
framework that uses a common frame for evaluatiry@ptimizing different state of the
art mapping algorithms on multiple NoC architecture

The third objective of this work is to adapt angtimize a general Simulated
Annealing technique, for NoC application mappinging domain-knowledge.

Our forth objective is to evaluate and optimizesiig domain-knowledge)
evolutionary algorithms, for Network-on-Chip applion mapping, through a multi-
objective approach.

Finally, we aim to perform an application drivemt@matic design space
exploration of System-on-Chip designs. This inveleatire application specific systems,
with heterogeneous processors, using a NoC asameection.

This thesis brings original contributions in thetiNork-on-Chip research field.
We contribute with tools for simulating and bencinkireg NoC designs. We optimize
algorithms for the NoC application mapping probléie also propose an application
driven automatic design space exploration methadSgstem-on-Chip architectures.



2 Network-on-Chip Architectures

Since the invention of the integrated circuit irb& Moore’s law [4] describes a trend in
Computer Engineering that is still nowadays. Forertban half a century, the number of
transistors that can be placed onto a single cbybkgs approximately every two years
(initially it was one year, than Moore readaptesilgw) [5]. In the early beginnings, a
computer system occupied an entire room. As tedgyoévolved, in the 70s the Large
Scale Integration (LSI) era began and the compuwterse rack-level systems. In the 80s,
Very Large Scale Integration (VLSI) era began. Thisant a system can be placed on a
single board. Ten years later, in the 90s, we werdhip-level systems (ULSI — Ultra
Large Scale Integration). Nowadays, billion tratsts can be integrated on a single die.
A chip is an entire system and so, the term Sysie#@hip (SoC) was coined. Systems-
on-Chip make use of parallel processing at alllevastruction Level Parallelism (ILP),
Memory Level Parallelism (MLP) and Thread LeveldMatism (TLP) [6], [7], [8]. [9]-
We researched these levels of parallelism prewohglfocusing on branch prediction
[10], [11], [12] and multicore architectures [1Bl4]. SoCs are feasible for a wide range
of applications. However, they determine the aett# to focus on the complex aspects
of the communication architecture.

The continuously growing number of transistors pleip leads to a bigger and
bigger gap between logic gate delays and wire delay]. As compared with the gate
delays, the global interconnection wires used hypécal bus interconnection network
determine significantly higher delays.

Systems-on-Chip also incur problems related to dexity, design flexibility and

productivity and system synchronization. Achievigigbal synchronization is getting
harder and harder as technology advances and pbgol sncreases.
Currently, computer architects face with the difficoroblem called Power Wall. The
Power Wall is what determined the appearance oficosé and manycore architectures
[16]. Parallel programming is needed to exploit tisores. Obviously, such architectures
require scalable interconnection networks. It islakieown that the bus is not a scalable
interconnection network [2].

The gap between on-chip and off-chip communicaioimcreasing. On-chip, we
have greater bandwidth and shorter latencies hatpbwer budget is smaller. Besides
scalability, on-chip communication also meafigxibility, simplicity and efficiency
Flexibility is achieved by no longer using applioatspecific wiring (like buses do).
Simplicity refers to modular, structured and regutesign. Efficiency means the
interconnection’s ability to share global wiresveen different communication flows.
Communication is a performance bottleneck. Becadshis, the design shifts from a
processing-centric to a communication-centric appino

Simply stated, aNetwork-on-Chip (NoC) is a communication network that is
used on a single chip. A Network-on-Chip consistsaonumber of interconnected
heterogeneous devices (e.g. general or speciabpairprocessors, embedded memories,
application specific components, mixed-signaD lEores) where communication is
achieved by sending packets over a scalabterconnection network. No global
wiring is used by a NoC. Wiring resources are ghanethe communicating devices. The
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idea appeared in the 90s but it started to be resed only from year 2000. Some of the
first papers introducing the NoC concept are [{18], [19], [20], [21], [22] and [23].

The Network-on-Chip research field is relativelysnand of high importance. In
HIPEAC'’s vision [24], nowadaysommunication defines performanc@ommunication
is essential at three levels: (1) between a processd its memory, (2) between a
multicore’s different processors and (3) betweeocessing systems and input/output
devices. At the processor — memory level, the impacommunication on performance
is basically controlled through cache hierarchigsthe other two levels, it is the role of
the interconnection network to deal with the comioation cost so that performance is
less affected. More precisely, more and more psmssare integrated on the same chip.
Sincepower defines performancenulticores are now the solution for achievinghag
performance. In this context, traditional buses,icWwhallow the processors to
communicate, no longer suffice. Networks-on-Chipviie the scalability that buses
lack. Therefore, NoCs will have an increasing int@oce in the following years. The
growing interest in this area of research is sag@ssut in HIPEAC's vision [24]:
interconnects is one of the clusters on which HiEEAoadmap is built.

A component-based hardware design methodology visiened in the future
[24]. This means that systems will be built fronargtard reusable components like
memories, cores and interconnection networks. déssgn technique applies however at
multiple levels. The level of abstraction increapesgressively. Basic blocks (gates,
registers, ALUs etc.) make components (proces$to€s etc.). Components are then
used to create different kinds of chips (CPUs, GBkt$ so on), which in turn are used to
obtain systems that also are interconnected, lgadisystems of systems.

Obviously, the importance of interconnection netgancreases as the number of
communicating components raises. For intra-chip roamication, the NoC is the
solution and this is due to at least one factoaladwmlity. As the number of cores
increases, the impact of memory bandwidth and meghatency becomes more and more
stringent. Networks-on-Chip help at controlling f®blems of memory bandwidth and
latency. HoweverNoCs have a lot of issues that need solvifgr example, they still
require a lot of power and occupy large areas @tttip.

More precisely, research in the field of intercection networks is required by all
of HIPEAC's current research objectives: Designcepixploration (DSE), concurrent
programming models and auto-parallelization, desafjroptimized components, self-
adaptive systems and virtualization.

PerformingDesign Space Exploration (DSHE)r entire systems is currently a
challenge. Unified DSE frameworks, that include th&rconnection networks, are
estimated to be available only between years 2062820 [24]. HIPEAC Consortium
also estimates that the design space of intercesimelt be feasible for exploration only
around the year 2015. Only then, network trafficdels, benchmarks and realistic
performance/power models will be available for dwpdnterconnection networks.

Developing concurrent programming modelgequires network interface
mechanisms which efficiently support the cache oeiee protocols and the
communication between processors.

Electronic Design Automation (EDAéfers to a set of methods and tools that help
at improving the system’s design efficiency. EDAcludes (among others)
hardware/software modeling angartitioning and mapping applicationso Multi-
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Processor System-on-Chip (MPSoC) architectureatéelto this is the mapping problem
for Network-on-Chip architectures). EDA has severahallenges related to
interconnection networks:

- full system simulation, including the interconneat;

- designing application-specific networks;

- designing reusable interconnection modules throntghface standards.

Creating interconnection network architectures Winieduce power, latency and
integration area is a challenge agsigning optimized componen®he interconnection
network may also be optimized by using dynamic powenagement techniques.
Another goal is to design on-chip memory hierarghie

A challenge of self-adapting systemss to designfault tolerant network
architectures and protocols. The network trafficyratso be monitored and controlled.
Such data may be used by the run time system fieadaptation.

Network interconnection is important fairtualization as well, from the point of
view of system security and quality of service. Timetwork may be physically or
logically partitioned. A research challenge is tentify how network topologies and
routing algorithms can help at system partitioramgl isolation.



3 Network-on-Chip Application Mapping

The Network-on-Chip research field deals with gftemajor problems [3]. We will focus
next only on one of them, namely Network-on-Chiplagation mapping.

We begin by defining the Network-on-Chip applicatiproblem and by showing
that it is an NP-hard problem. Then we show th@bfam is directly connected to other
two NoC research problems: scheduling and routing.

We then propose a taxonomy for Network-on-Chip liagppon mapping
algorithms and we describe some of the state odthalgorithms for NoC mapping.

3.1 The Network-on-Chip Application Mapping Problem

The design flow of a Network-on-Chip architectuoe & specific application implies the
following three major steps [25]:

1. dividing the application into a graph of concurreagks (threads);

2. assigning and scheduling the application taskkdatailable IP cores;

3. mapping each IP to a NoC tile, so that the metfaaterest are optimized.

The Network-on-Chigpplicationmapping problemvas formulated in [25] as the
topological placement of the IPs onto the on-chigstIt is an instance of thguadratic
assignment problenwhich is proven to be an NP-hard problem [26]e Bearch space
increases factorially with the system size. Fomapia, a NoC with 8x8 tiles theoretically
allows 64! mappings. Theoretically, mappiNdgP cores ont®1 network nodesl < M)

implies ﬁpossible core arrangements on the NoC nodes. Wigenumber of IP
cores is identical to the number of network nodds=M ), the number of possible
mappings becoméd!. This is therefore a permutation, combinatorialphgpem. It
directly affects NoC’s performance in terms of fatg, throughput, power consumption,
energy etc. This is because typical network mefikes latency and power are directly
proportional to distance.

A typical mapping cost function [27] is:

Cost(rr0P) =ZBV\( = Z[bw_>j [(Dist(i, j)], wherex is a particular mapping

0L 1<i, jsN

from P, the set of all possible mappindsis the set of NoC links which are used by the
application.BW is the bandwidth delivered over lihkDist (i , j) is the distance between
nodesi and j (hop count) andbw.; is the bandwidth required by node for
communicating its data to nogle
Consider for example the following two mappings and z,. They consist of six
processing elements placed onto a 2D mesh NoC.cBE2nunicates 30 bits/s to PE6
and PE4 100 bits/s to PE3. We are interested ttua&eathe two mappings using the
above cost function.
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Mapping Mapping 1,
Fig. 1 Example of two mappingstl and =2

For the first mapping, we have:

Cosi(n,)) =bwW(PE, - PE,)[Dist(PE, - PE;) +bw(PE, - PE,)[Dist(PE, - PE,)
Cosf{(rr) = 30[Dist(PE, - PE) +100Dist(PE, - PE;)

Cost(7;) =30[2+100C8 =360

Similarly, for the second mapping we gets(7z,) =30[2+1002 = 260. Notice that the

only difference between the two mappings is theqigent of PE4 and PES. In the
second mapping, PE4 is closer to PE3. Becauseigff gdiven the above conditions,
mappingr; is better than mapping.

In the field of embedded systems, an applicatiotypgcally described through a
Communication Task Graph (CTG). A CTG is defined in [28] as a directedyclic
graphG'=G'(T,D), where each vertex, T , is a an application task (a computational

module in the application). A task typically hasigeed to it information likeexecution
time on every type of Processing Element (PE) availafole the NoC, energy
consumption(when assigned to a certain PEsk deadline(the time until the task
associated with the CTG node must complete its i@t [29]), etc. A directed arc
betweent; andt;, is noted asd, ; D Dand has a value associated to it, which represents

the communication volumev(d, ;), usually expressed in bits) exchanged betweers task
t;andt; . Each arc shows both data and control dependenkidata dependencsarks
that there is a communication between the two ta@kandt;) [30]. A control

dependencyndicates that a task cannot be executed befengrédecessor tasks are not
completely executed [30]. Thus, a data dependenbgsically an undirected arc between
two tasks. When such an arc is present betweenasks, it means that the two tasks are
communicating. When the arc is directed, the aacisw shows a control dependency
between the two tasks.

Note that a CTG is defined as an acyclic directegly However, in reality, the
tasks of an application may exhibit a communicapattern which creates loops. Loops
are not usually modeled with a CTG because of tieed-considerations. For hard real-
time applications, unbounded loops are avoided usxdhey do not allow bounds on
graph execution times. It is not possible to gu@arhat the worst-case communication
volume path can be executed under the specifiedlidealt is preferred that deadlines
can be assigned to tasks and a CTG typically heeriad attached to it. The CTG can
therefore be reiterated after a certain amounnud {31].

The Directed Acyclic Graph (DAG) model of a parbfjeogram is used in [32] to
address the scheduling problem. In our humble opinihe Network-on-Chip research
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community adopted the DAG model, from the schedutesearch area, with the name of
Communication Task Graph.

A task is defined in [32] as a set of instructidingt are executed sequentially, on
the same processor, without preemption. The taskriede in the DAG. It may have a
weight attached to it, which represents the contfmurtal cost. However, a CTG does not
weight the nodes because it is only communicatigented.

The DAG arcs model the communication messages ded precedence
constraints between tasks. The arcs are weightéid e@gmmunication costs. If two
communicating tasks are assigned to the same macdkeir communication cost will
be neglected. The precedence constraints are wdled the graph to be directed. They
show how communication flows among tasks. A nodeisallowed to start its execution
until it receives all the messages from its paremtes.

Program loops cannot be explicitly represented gusthe DAG model.
Conditional branches are not included as well. Aditg to [32], including loops and
branches in the DAG model is an implicitly diffituproblem. Additionally, many
numerical applications (e.g.: Fast Fourier Transfocontain loops with a number of
iterations known at compile time. For such prograteshniques like loop unrolling [6]
can be applied. This way, one or more loop iteratican form a task. Also, large classes
of numerical applications and data-flow programeeheery few conditional branches.

Scheduling a DAG with probabilistic branches andple® was addressed in [33].
Each graph arc has a probability that the childenadl be executed immediately after
the parent node. Scheduling DAGs with conditionaniches is made in [34] by using,
beside the precedence graph, a branch graph, ttmujh DAG models that deal with
loops and/or conditional branches have been prahdbe Network-on-Chip research
community adopted the simple DAG model, withoutpgeaand conditional branches.
Therefore, a CTG does not model program loops mandhes. It focuses on the
communications among the tasks of data-flow program

The acyclic property of a Communication Task Grapldropped at a coarser
level, denoted by aApplication Characterization Graph (APCG). An APCG models
an application at the level of Intellectual ProgdiP) cores and it is defined in [28] as: a
directed graphG =G(C, A), where each vertex, [JCrepresents an IP core and each

directed arc,a ; 0 A, characterizes the communication between apeesd c;. This

may be application specific information like comnuation volume. It can also be
design constraints, like communication bandwidtbaaof IP cores, etc. As in the case of
a CTG, a directed arc of an APCG shows data anttaiatependencies. But, compared
to a CTG, an APCG allows cycles. For example, we tave a bidirectional
communication between two cores. Note that loops sill not desired in APCGs
because of real-time constraints. It is often prefeto transform a directed graph into a
Directed Acyclic Graph (DAG) [35]. This allows wdrsase execution time analysis,
which makes the APCG usable in hard real-time systas well.

An Application Characterization Graph is obtaineait a Communication Task
Graph by scheduling the tasks on available IP cores

Having the definitions for a CTG and an APCG, we ceow illustrate the
application mapping problem for NoCs using thedwihg figure.
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Metwork-on-Chip (MoC) architecture
Application Characterization Graph [APCG)

O application task Metwork tile

IPcore L. Metwark logic

Fig. 2 The Network-on-Chip application mapping prodem

Obviously, the NP-hard problem cannot be solvednigans of exhaustive search.
Heuristic algorithms [36] are employed with the gpase of finding the best topological
placement of cores onto network nodes. The objedtito optimize network latency, its
energy consumption, etc. Multiple objectives maydiewed at the same time, too.

We show next that Network-on-Chip application maggpnteracts directly with
other two NoC research problems: routing and apfiio scheduling.

3.1.1 Application Mapping and Routing Problems

While a good mapping of cores onto network nodeslead to energy savings, the routes
used by the cores to communicate can have a grgetci on the NoC’s performance.
The best topological placement of cores onto nagesot enough to account for the
performance of the network. The next figure showseaample where two minimal
routes are available between the top-left and betight tiles of a 2D mesh NoC.
Choosing the proper route can increase the perfuwenaf the network.
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o
Network-on-Chip (BoC) architecture

Application Characterization Graph (APCG)  —~  —— T i
O application task ietvrotic il
Pegre Network logic

Fig. 3 The application mapping and routing problems

This shows that thapplication mapping problem is tightly connected tothe routing
problem. Usually it is not necessarily to generate routraghs when placing IP cores
onto NoC tiles. A mapping algorithm may simply cioles that the NoC architecture is
using a particular routing protocol (like XY rouginin [25]). However, routing
information can help at obtaining a better mapp8%.

3.1.2 Application Mapping and Scheduling Problems

Before mapping the IP cores onto the Network-onpGies, the application’s tasks and
communication transactions must be assigned ta\Nth@ resources. Additionally, the
tasks’ execution order must be established. Thisaled thescheduling problem for
NoC architectures [38] and is an NP-hard problemwels It has a considerable influence
on the energy consumed by the IP cores when contpudue to their heterogeneity. For
example, a DSP core may consume less energy tlg@nexal purpose processor when
computing a Fast Fourier Transform. Also, the comication energy consumption of
the NoC architecture is affected by the task assegrt (because of the routing paths).

Therefore, the application mapping problem is cotet to the scheduling and
routing problems. The following figure illustratdss fact.
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Mapping

& % ,,,,,,,,,

Routing . ‘l( |

NetVJork-on-C‘PHE(NU‘CT architecture
Communication Task Graph (CTG) Application Characterization Graph (APCG) = om —_

O application task Metwaork tile

IPcore Metwork logic
Fig. 4 The scheduling, application mapping and rotihg problems

An application is described through its CommunaatiTask Graph. A scheduling
algorithm is then used to assign application tg#keads) to available IP cores and to
specify their order of execution. After the schedyl step, the Application
Characterization Graph is obtained. Then, using appimg algorithm (which may
generate the routing function as well), the IP saee topologically placed onto the NoC
tiles.

We observe that both scheduling and mapping dlgos for Networks-on-Chip
have similar objectives. Increasing the performaraned decreasing the energy
consumption of a NoC, for a particular applicatiare two optimizations typically made
by such algorithms.

Ideally, both scheduling and mapping problems shdé treated together. In
other words “scheduling” means mapping the appbo& tasks onto the available IP
cores, and “mapping” means mapping the IP cores ¢m¢ available NoC nodes.
Therefore, both scheduling and mapping problems$wliga application mapping onto a
Network-on-Chip.

Nevertheless, because of the NP-hard complexitythef problem, mapping
applications onto NoCs is divided in a two-step cgss: scheduling, followed by

mapping.

3.2 Taxonomy for the Application Mapping Algorithms

An application mapping algorithm takes into consitien the characteristics of the
application, and it has the purpose of findinglikst placement of IP cores, onto the tiles
of the Network-on-Chip architecture. Obviously, #ygplication mapping algorithm must
be aware of the NoC topology. The placement ottires onto the network nodes can be
made before the application starts to be executddtaannot be changed afterwards. We
call thistype of mapping a static mapping. Obviously, the mapping process is iteeati
multiple mappings are generated until the optimuapping is found but, in case of static
mapping, all the mappings are obtained before th@ication starts running. If the
mapping of cores changes while the application,rashave alynamicmapping. This

is typical for NoCs that are fault tolerant or apation-adaptive. This kind of mapping
could also lead to an increase of network perfogaaand/or to a decrease in power
consumption but, it is more difficult to implemeditan static mapping is).

10
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The factorial number of possible mappings can beredsed because it is very
likely that not every mapping is feasible. Thidbecause of the communication demands
of the application and the hardware limitations tbé underlying Network-on-Chip
architecture. For example, consider that we hawe ¢ammunicating IP cores which
require a bandwidth d bytes/s. The NoC architecture may have some timssupport
such high bandwidth and other links that do notpsupit. In such a case, mapping the
two IP cores so that they would require commumigptiver links that do not support the
required bandwidth would generate an impracticgbpivag. The bandwidth requirement
is an example of anapping constraint. We define the mapping constraiM) as a
restriction, derived from the requirements of tpplecation and the characteristics of the
Network-on-Chip architecture, imposed when assmgdf cores to network nodes. Any
mapping constraint may limit the size of the seasplace. An application mapping
algorithm may or may not use one or more mappingsttaints but, usually this should
be an obvious thing to do because it would speedhepmapping algorithm. The
difficulty of using a mapping constraint consistshaving the means to evaluate if a
mapping satisfies or not that constraint.

The application mapping algorithm explores the dearee of possible mappings
and tries to find the best mapping (for a certgpligation and NoC architecture). In
order to determine the best mapping, at leastoptienization goal is required. Example
of optimization goals can be: network performancemmunication energy, power
consumption, etc. Thus, a mapping algorithm mayctedor the best mappings by
considering &ingle objectiveor evermultiple objectives

As we showed in Section 3.1.1, the mapping prob&eatso closely related to the
routing problem. Any routing algorithm may be appliafter the mapping has been done.
However, if the mapping algorithm is natuting aware, it is possible that the best
mapping does not actually provide the best netvp@rtormance due to the fact that the
routing paths were not considered when applyingofbtemization goals to the possible
mappings. A mapping algorithm can thus, deal wdéntifying the routing paths for the
mapped IP cores as well. The routing function canldierministicor adaptive Also, it
should provide freedom from deadlock and livelaakd it may have other characteristics
like being minimal.

To summarize, we have established that we have tiywes of application
mapping algorithms: static and dynamic. Any mappalgorithm, whether static or
dynamic has at least one optimization goal (simdigctive or multi-objective). It may
use (one or more) mapping constraints. Also, it rdagermine the routing function,
during mapping. The routing can be deterministicadaptive and it can have other
properties like freedom form deadlock and otherg Neéve thus four classification
criteria:

. static optimization | single objective
mapping type dynamic goals multiple objective
with one or more generates routes
mapping mapping constraints routing while mapping
constraints without any mapping awareness | does not generate
constraint routes

11
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An application mapping algorithm can be static ynamic. Either static or dynamic, the
mapping algorithm can have a single objective ($©)multiple objectives (MO) to
optimize. Characteristics like using mapping casts and being routing aware (RA)
are optional and can be applied to any type of nmgpgalgorithm (making it thus more
specific).

Finally, we note
that in [39], where the
scheduling problem is alsg
considered, the algorithmg
are classified as integrate
or separated based o
whether they treat NoQ
mapping and scheduling
together or not. We
consider this to be gooq
classification criteria when DYNAMIC
including application
scheduling, too. The
algorithms presented in the above cited paper are NoCs and for bus-based
multiprocessor embedded systems. The NoC algoridmasclassified only by whether
they have routing awareness or not. The algoritftondus-based systems are classified
according to their optimization goal (energy mirgation, handling soft real time
constraints or memory awareness). Issues like mgdppe and mapping constraints are
also mentioned but they are not used as classdicatiteria. The single/multi objective
(optimization goals) criterion is not included. Té®re, we consider our proposed
taxonomy to be in accordance with the one from [88] more general and suitable.

Fig. 5 Taxonomy for application mapping algorithms
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4 Designing a Unified Framework for the Evaluation
and Optimization of NoC Application Mapping
Algorithms

The NoC application mapping problem is addressethbyresearch community through
application mapping (heuristic) algorithms. As vavé already shown in Chapter 3, these
algorithms consider the characteristics of both application and NoC architecture.
However, currently, the existing application magpaigorithms are basically evaluated
only on 2D mesh topologies. But, they can be exdndo work with other network
topologies, too. These algorithms are evaluategl onlsome specific NoC designs and
also, their performance cannot be directly comparedause a common evaluation
methodology is missing.

We propose a unified framework for the evaluatiod aptimization of Network-
on-Chip application mapping algorithms, callédiMap. Such a framework will allow a
better comparison of their performance. The frantkwall also be flexible so that many
NoC designs (e.qg.: different network topologies) ba used for testing the performance
of the mapping algorithms. An overview of UniMap svpublished in [40], [41]. Our
framework is an open source project available ur@@et v3 license for the research
community [42].

We have successfully used UniMap on bligh Performance Computing (HPC)
System[43] from “Lucian Blaga” University of Sibiu, Romania. Our HPC currently
has 30 Intel Xeon E5405 homogenous quad coreslétfed 120 cores), operating at a
frequency of 2 GHz. This means a total 10 Intel cores This HPC system also
includes 4I1BM Cell Broadband Engine (Cell BE) processors (2 bladés;des). The
IBM Cell is a heterogeneous multicore, consistirigao64-bit dual thread PowerPC
(master) core plus 8 SIMD processors. These (shagejorial processors, called SPU
(Synergistic Processor Unit), are specialized fatadntensive processing domains like
cryptography, media and scientific applicationse HiPC allocates 4.84 GB of DRAM
memory for each two Intel quad cores and 7.85 GBRAM memory for each two IBM
Cell cores. This means a total&8.3 GBof DRAM memory. The total storage capacity
is approximatelyl.2 TB. We also performed simulations with UniMap on tHEC
system fromPolitehnica University of Bucharest, RomaniaUniMap is written in Java
(except the NoC simulator, which is written in C+fdich makes it highly portable and
feasible to be further improved with concurrentgseanming characteristics.

4.1 The Unified Framework Design

UniMap is composed of the following major modules:

- a model for representing real applications;

- amodule for assigning the application tasks todfes (Scheduller);

- a module that contains application mapping algorgt{Mapper);

- a model for representing different Network-on-Chiphitectures;

- a Network-on-Chip simulator.
This design reflects the interaction between thémdek-on-Chip application mapping
problem and the other two problems with which temacts (routing and scheduling — see

13
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sections 3.1.1 and, respectively, 3.1.2). Theutezdare as decoupled as possible. This
approach allows UniMap to be flexible, reusabled(arodular).

We use eXtensible Markup Language (XML) schemas dascribe real
applications and Network-on-Chip architectures. T®eheduler, Mapper and NoC
simulator modules do not interact directly. Theynoounicate through XML models.
This approach theoretically allows any NoC simulato be used with UniMap.
Similarly, any scheduling or mapping algorithm ¢enintegrated as easy as possible.

The following figure illustrates these componentd aresents the design flow of
the unified framework.

Configure NoC architecture ¢

Y
=<
Q
©
©
[0)
=

Application

mapping
algorithms

(CTG)

— IP cores
Communication Task Graph (~ Application Characterization Graph \

Network Analytical
s traffic [~ NoC simulator model
generator

Scheduller

Y

Fig. 6 UniMap design flow

An application running on a NoC architecture isadé®d through its Communication
Task Graph (CTG). The CTG presents the applicgtemitioned into tasks (concurrent
threads). It shows the communication pattern of #pplication: which tasks are
communicating with which tasks and the communicatiolume of the data exchanged
between tasks (e.g.: GMdenotes the communication volume from tagkoltask ).

We propose obtaining CTGs in three distinct ways:

1. randomly, by using the TGFF [31] tool;
2. from realistic embedded applications, using the B&schmarks suite [44];
3. from real-world multithreaded applications, usihg CETA [35] tool.

The tasks must be first assigned to the IP coréss €an be done using a
scheduling algorithm. For example the EAS algori{l38] is able to perform scheduling
under real-time restrictions, while trying to optaa the energy consumption of the NoC
architecture.

The IP cores library from E3S was integrated in Nlep. For each IP core,
information like task execution time and power agngtion for a given task is known.

The output of the scheduling algorithm is the Apafion Characterization Graph
(APCG). The APCG is the input for the mapping ailtpon.
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A main component of the framework will consist itit@ary containing (state of
the art) application mapping algorithms’ impleméiatas. The performance of every
mapping algorithm can be evaluated on multiple N&Signs, through our developed
simulator.

The NoC simulator is another important part of tmafied framework. An
important aspect of the simulator consists in lexibility. This will impact on the
number of possible ways in which the simulated Na@ be configured. The simulator is
also responsible with determining the network’s f@enance represented through
multiple objectives (performance, energy consunmptietc.). This allows a thorough
comparison of the mapping algorithms, in a unifiednner. For each selected network
design (e.g.: the network topology can be variad)application mapping algorithm will
provide multiple mappings, until the best mappisgdetermined. The NoC simulator
includes a network traffic generator which emuldtesscommunicational behavior of the
application (based on CTG and APCG graphs).

4.2 The Developed Network-on-Chip Simulator

ns-3 NoC is a Network-on-Chip simulator that théhau of this Thesis started to develop
during his five months of PhD external researchgestat Augsburg University
(Germany), Department of Systems and Networkirgyple Professor Theo Ungerer. We
decided to develop our own NoC simulator becaugectirrent tools for this (new)
research field are still immature. According to BAC's vision [24], mature NoC
simulators are expected only in 2015.

The simulator is based on the ns-3 simulation fraank for Internet systems. It
is a modular, flexible and scalable NoC simulatlbhas parameters like: flit size, packet
size, packet injection probability, packet injeati@te, buffer size, switching mechanism
(Store and Forward, Virtual Cut Through, Wormholsguting algorithm (Dimension
Order Routing and other two protocols that accdanthe network load). It supports k-
ary d-cube topologies (2D mesh, 3D mesh, 2D to8¥,torus, hypercube etc.). It
contains a network traffic generator based on comecation patterns form real
applications. Also, using ORION 2.0 [45], it cantiesmte power consumption and
integration area. Our ns-3 NoC is an open souroge@l, which we contribute to the
Network-on-Chip research area.

4.2.1 Experimental Results

We present next some preliminary simulation respliblished in [46], were we
evaluated the potential of the NoC Irvine architeetand were we showed the impact of
the buffers’ size on NoC’s performance. The follogviresults express the network
performance, through the average latency of th&giacas a function of packet injection
probability. The synchronous version of the simuavas used. During the simulation,
the first 1000 cycles were considered warm-up cycRackets were injected into the
network for 10000 cycles. Only the packets injectdter the warm-up cycles were
collected into the statistics. The Irvine architeetwas used, with XY routing, wormhole
switching, input channel buffers of 9 flits in siaad packets of 8 flits in length. The
effects of speeding up the data flits, like it @nd in [47], are shown it the following
charts.
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Fig. 7 shows how, on a 8x8 Irvine NoC, the avenpgeket latency decreases as
data flits are sent through the network using alcloequency which is two or four times

higher than the one used for advancing the hetsd fli

Average packet latency (cycles)

Average packet latency (cycles)

60000

50000

40000

30000

20000

10000

18000

16000
14000
12000
10000
8000
6000
4000

2000

Bit-complement traffic in a 8x8 2D mesh

origihal J——
2x

0.2 0.4 0.6
Packet injection probability

Bit-reverse traffic in a 8x8 2D mesh

0.8 1

original —+—
2x

4x e

0.2 0.4 0.6
Packet injection probability

0.8 1

Average packet latency (cycles)

Average packet latency (cycles)

6000

Matrix-transpose traffic in a 8x8 2D mesh

5000

4000

3000

2000

1000

origiﬁal ——

x - X

18000

16000
14000
12000
10000 r
8000
6000
4000

2000
0

0.2 0.4 0.6
Packet injection probability

Uniform random traffic in a 8x8 2D mesh

original —+—
2x

4x e

0 0.2 0.4 0.6 0.8 1
Packet injection probability

Fig. 7 The average packet latency on a 8x8 IrvinedC architecture, while the speed with which data
flits advance in the network varies for 4 differentcommunication patterns

With the matrix-transpose traffic pattern and usimg4 times higher clock
frequency for the data flits, the packet’s averkdency remains close to the zero-load
latency, as long as the injection probability isvés or equal than 0.9. The Irvine
architecture helps at decreasing the network caiogeshis is also visible for the other
three traffic patterns. The network is significgnléss congested when data flits are
transmitted faster than head flits. For the bit-ptement traffic pattern, the average
packet latency is fairly higher because each nogets packets. This is not true with the
other traffic patterns because they can creatéicrbm a certain node to exactly the
same node, which is not injected into the netwdrkerefore, we believe that this
behavior might contribute to the bit-complemenigher packet latency.

We did similar simulations on a 4x4 Irvine NoC, tddne simulations on an 8x8
Irvine NoC took approximately 10 times more timaritthe simulations done on the 4x4
network. The longest simulation on a 4x4 netwoktaround 2 minutes and a half (this
is approximately 10 times faster than NoCSim [48]).

In [49] we showed how the NoC performance varesopologies like: 2D mesh,
2D torus, 3D mesh, 3D torus and hypercube. For piarthe following figure shows the
buffer size influence on the performance of a (2¥2 hypercube. Unless specified
otherwise, the simulator’'s parameters have the satoes as before.
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Fig. 8 The average packet latency on a hypercube Barchitecture, while the size of the input
buffers varies uniformly

The Network-on-Chip’s performance improves as tlkéeb size increases.

We show next how the NoC’s average packet latedlecyeases as we increase the
node degree by switching from a 2D mesh to a 3Dhnaesl then to a hypercube. The
simulations were made using the uniform randonfitragttern.
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Fig. 9 Average packet latency on 64 node mesh No®@dth 2, 3 and respectively 4 dimensions
We observe a significant increase in the NoC’sqraerhnce when using a 3D mesh. The

performance increases even further when placing4haodes in a hypercube topology.
We observed the same behavior torus topologies.
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5 Benchmarks

In the previous chapter we presented our developéad framework for the evaluation
and optimization of Network-on-Chip application mpam algorithm. UniMap uses as
input traffic patterns for real applications, délsed through directed graphs. As stated in
[30] Network-on-Chip benchmarking is still an opgroblem. The Open Core Protocol
International Partnership (OCP-IP) is currently king to model real applications for
NoC benchmarking [50].

This chapter presents the benchmarks used in tiils tResis, for studying the
Network-on-Chip application mapping problem. All nobmarks describe real
applications, designed for Systems-on-Chip (SoT§ese applications are modeled
using Communication Task Graphs. We gathered soimteomost used CTGs and
APCGs by the NoC research community and integrétedn in UniMap, through a
common XML representation. The communication graguestaken from the Embedded
Systems Synthesis Benchmark Suite (E3S) [44] amt Bome of the most cited papers
from the field of Networks-on-Chip. We also make cantribution to Network-on-Chip
benchmarking, by proposing two new CommunicatioskT&raphs for a H.264 video
decoder.

In this PhD thesis abstract we present only tret flommunication Task Graph
for the H.264 video decoder.

CTG 0 presents a H.264 decoding system that us@spartitioning: the video
stream is equality divided onto more CPUs, eachabrieem running a H.264 decoder.
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36864 ) 49152 14915?

206720
buffer 36864 } ; 286720 Inter-part dep mem =
' Intra Pred multiple frame buffers
18841
buffer {Bea1
i mmem wr
286720 S 1949696
MC pred 4

Fig. 10 H.264 CTG 0 (period: 0.0009765625 seconds)

With the functional partitioning approach, the seges between the decoder
tasks are communicated. With data partitioninga difpendencies among data partitions
are communicated. It is shown in [51] that, withedjpartitioning, a significant bandwidth
reduction is obtained.

From H.264 CTG 0 we created APCG 0, with 14 cdogggrouping the two tasks
for accessing the intra mode memargn(mem rdandi m mem wj.
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6 Optimized Simulated Annealing for Network-on-Chip
Application Mapping. A Domain-Knowledge Approach

Simulated Annealing (SA) [52] is one of the firgunistic algorithms used to address the
Network-on-Chip application mapping problem.

The advantages of Simulated Annealing are givernsbgase of implementation,
its applicability to many combinatorial optimizatigproblems and the ability to give
reasonably good solutions [53].

However, the parameters of the algorithm must befaly chosen, since SA can
easily run for a very long time until it gives aitable solution. Because Simulated
Annealing is a very general algorithm, several cési must be made in order to
implement it for a particular problem.

This chapter presents a domain-knowledge approachNetwork-on-Chip
application mapping problem. We describe an OptahiSimulated Annealing (OSA)
[54] algorithm that we designed for the topologipcement of cores onto NoC nodes.
OSA uses an application- and network-based expboradf the search space. Using
knowledge about communication demands, the IP caresclustered implicitly and
dynamically. We compare OSA with the above mentibsienulated annealing technique
and with a branch and bound algorithm, too. We $ooun algorithm speed, memory
consumption and solution quality.

6.1 The Algorithm

OSA was created by continuing the work of Hu andrddkescu. Their Simulated
Annealing and Branch and Bound algorithms are alkgl through the NoCmap project
[55]. We have ported their two algorithms, writierC++, into UniMap (written in Java).
OSA also uses some of the best practices for Stedilannealing applied for assigning
tasks to processors [56]. We justify our approaghthe fact that NoC application
mapping problem is closely related to the NoC sahed problem [28].

We present next the Optimized Simulated Annealisgupocode, which is
derived from the general Simulated Annealing fré&]]
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Reqguire: M; =0
Ensure: T, = 1
M «— M;
O BitEnergyCost{ M;)
Miyesr = M
Ceat = C
Ty = 0.001
It =1
for i =0 te oo do
it i % L =0 then

=0
end if
T =Ty 09LF]
M, = PO Fbased Swapping U 1
Chew = Bit EnergyCosti A,
AC —{ W —
if A = [ﬁ ar NormIneErpAecept{ AC, T) then
if O < O then
Mipas = Mo
Cheat = Crow
F=10
else
F=H+1
end if
M = M.,
O =
else
R=R+1
end if
if 7= T and R = L then
breal:
end if
end for

return M.

Fig. 11 Optimized Simulated Annealing

OSA starts from an initial mappindi, which is randomly generated. Another input
parameter can be the initial temperatulig,set to 1 by default. The mapping’s cost is
obtained using the bit energy model from [25]. Wée & standard geometric annealing
schedule, with

Losa=nCo—n

_nn-1) (n-c-Y(n-c) _c(2n-c-1)
—CCZ - - -
2 2
annealing iterations per temperature level. Thisnlber corresponds to how many
mappings may be obtained from the current mapgiggnoving one core. SA hasa =
100rf (we noted the number of NoC nodes wijhlt is obvious thatl,., < L,. Also, in

OLosd =O(M) |1 Ollosd) _ gg0s
(L =1000(7) ~ O(Lsy)
This speedup is in perfect concordance W|th ouhéurexperimental results.
While other Simulated Annealing approaches (for Naplication mapping)
select the core to be swapped randomly, OSA doésuse a uniformly random
probability when determining the core to be movedtead, it adapts the variable grain

,c,NUON,n=>c

terms of algorithm complexity, we note tha
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single move (based on probability densities andd use task mapping [56]) into a
variable grain swapping move, which uses two Priibatbensity Functions (PDFs).
OSA builds a Probability Density Function (PDF) &ach core, based on the amount of
data it communicates. This leads to better chaforeselecting a core that communicates
more data than a core which communicates less datahe annealing temperature
decreases, the probabilities uniformly equalizeer&fore, at low temperatures, all cores
have an equal chance to get selected for swappimgugh this approach, OSA uses
problem knowledge (dynamic characteristics) to esethe search space. The following
function is used:

P[ SelectedCore ] i:E +I(M—}J, where:
T, \ totalToComm

- cis the number of cores to be mapped,;

- T and T are the current and initial temperatures;

- totalToCommis the total amount of data communicated by theaaks;

- coreToCommis amount of data communicated by core
The second core used for swapping is selected bguating for the communication
volumes between the core to be swapped and thefréise cores. Another Probability
Density Function is built for each core. It is daniwith the one above but, it does not
consider only the data communicated by the coredisib the data received by the core.
Also, this second PDF is not temperature dependeath core gets such a PDF
associated before the annealing starts. This PDF defined

asHc cl= comm)
"7 777 totalComn
- commj is the communication volume between coamdj (this value is positive if
corei sends data to cojgeor corg sends data to corgotherwise, it is zero);
- totalCommis the communication volume of the entire appiarat
According to the PDF described above, the seconel isoselected for swapping. Then,
OSA searches, in a uniformly random way, for adireighbor of the second selected
core. This one will be swapped with the first seddccore. This approach tries to make
communicating cores to attract each other, to etugdtemselves, in a natural manner.
OSA'’s move function performs an implicit clusteriafjthe communicating cores, using
a stochastic approach.

Compared to Cluster-based Simulated Annealing (CEA], our algorithm
clusters the cores dynamically, during the anngaphase. OSA does not work with
predetermined clusters, and it also does not c¢lub NoC nodes. Network-on-Chip
node clustering is not needed because OSA loolteiNoC node’s neighborhood.

We call this kind of move &DF-based swapping movat every temperature
level, OSA performs exactlyosa PDF-based swappings.

We use the normalized inverse exponential acceptlimection because this is the
one recommended by [56]. OSA stops when the feraperatureT; = 0.001) is reached
and the number consecutive rejected mowsreachesL. This corresponds to the
coupled temperature and rejection threshold st@ppandition proposed in [56]. While
in [56] R counts how many moves were rejected since thetasipted move, in OSA we
use R to count how many moves were rejected, per teryrerdevel, since the last
current best mapping was found. This means thaev@tA requires no best mapping to
be found during an entire temperature level, theegd Simulated Annealing from [56]

, Where:
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needs to wait until the number of unaccepted mox@snted from the last one accepted,
reaches.. OSA’s stopping condition is therefore more codpte T;. than toR. This
makes OSA’s number of iterations to be independéihe NoC topology and its size.
Since we consider that the energy variations am@dlssnough when the final temperature
is reached, we believe our way of computiRgis more suitable for a Simulated
Annealing applied to NoC application mapping.

Currently, OSA works only with 2D mesh topologieast,bit can be adapted to
work with other NoC topologies, too. Like Hu and fdalescu’s SA, OSA is also capable
to generate the routing functions, in a deadlockt lavelock-free manner, and to check if
the obtained mapping meets the bandwidth conssraint

Compared to the general SA, OSA determines how nitamgtions to make per
temperature level by considering the mappings’ maghood size. Using Probability
Density Functions, OSA performs an implicit and ahyrnc core clustering (CSA’s
clustering is explicit and static).

6.2 Experimental Results

In this section, we evaluate our Optimized Simulatenealing by comparing it with
Simulated Annealing and Branch and Bound. The et is three folded. We account
for execution runtime, memory consumption and satuguality. We show next only the
most representative results. More detailed resunésavailable in [58].

We begin with a runtime comparison between OSA®AdNd respectively OSA
and BB. The speedups represent an average of 0t rl@time speedups obtained for
each benchmark.
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Fig. 12 OSA speedup over SA

The chart above clearly shows OSA is much fastn tHu and Marculescu’s Simulated
Annealing. We have obtained a 98.95% speedup omagwe This is in perfect
concordance with our theoretical speedup expecstidhe “lowest” speedups are on
office-automationand PIP, the benchmarks with the smallest numbéP @ores. We
justify this significant speed gain mainly by theywOSA computes the number of
iterations per temperature level. This number takes consideration the NoC size, the
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number of cores to be mapped, and it is much |divan the number used by Hu and

Marculescu.
The following chart shows how fast OSA is compare&8ranch and Bound.
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Fig. 13 OSA speedup over BB

It can be seen that OSA is slower than BB by ~ 2dfoaverage. However, for half of
the benchmarks, OSA is faster. Compared to BrandhBund, our algorithm obtained
poor runtimes on MPEG4 (more than twice slowerR@4. (~ 1.5 times slower in both
cases) and slower but similar runtimes for Riffice-automationVOPD (CTG 1) and
auto-indust We also observe OSA was faster on the biggesthoearks: 25% speedup
for MMS (with 25 cores) and ~ 41% speeduptidecom(30 cores).

Next we show how OSA’'s memory consumption is, comgpao the memory

consumed by Simulated Annealing and Branch and &oun

Q'ln gllb ol,a olle
o o'[a b;q’ '1-
(1]
30%
g 10%
E -10% .
T .30% %q,ﬁ ﬁ%eﬂ
B -50% %‘5
E
g -709’ —
0 (o o o G;“' © G‘&'
N "b- GO Q. \Qs \ N
& (%fs’&:ﬂo% \3‘? ‘1.6&0 o? 0’? %G%
09

N

Benchmark
Fig. 14 OSA compared to SA in terms of heap memoopsumption (a positive value means OSA
consumes less memory)
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Simulated Annealing consumes less memory than O8&nwnapping the benchmarks
with more than 16 cores. OSA manages to beat Sgewvaral benchmarks with 16 cores
but, on average, Simulated Annealing consumes witB% less memory than our
Optimized Simulated Annealing.

However, compared to Branch and Bound, OSA taléHeabit less memory on
average. This is shown in the next chart.
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Fig. 15 OSA compared to BB in terms of heap memoonsumption (a positive value means OSA
consumes less memory)

Actually, this chart points out the tendency of irla and Bound to grow its memory
requirements as the problem size gets higher: G@Buwmes with more than 33% less
heap memory than BB, dalecom

Now we present the quality of the solutions fougdh®e three algorithms. We are
interested in solutions with the smallest cost jbsdecause the cost function we used
estimates the energy consumed by the Network-op-Chi

The following chart compares the mappings foundS#y and OSA. For each
benchmark, we evaluate the 1000 mappings returgeithéo two algorithms and count
how many times one algorithm retuned mappings béttarked with “<” in the chart’s
legend) than the other one. Cases when both digmsiteturned mappings with exactly
the same cost are marked distinctively.
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Fig. 16 OSA mapping costs, compared to SA mappiosts

We notice that both algorithms find the same “Mstution”, after all 1000 runs, for
benchmarks:networking office-automationand PIP. For the last two of these three
benchmarks, we confirm the solution is optimal liseawe applied an exhaustive search.
Overall, OSA finds worse solutions than SA for 6tbé 14 benchmarks used in our
simulations: MPEG-4, MWD, H.264 (CTG 0), MMS (CTQ, MMS (CTG 1) and
consumer

We have also found out that SA and OSA always fir@lsame best solution. However,
Branch and Bound fails to obtain a mapping thatssoames at most like the best mapping
found by SA and OSA in two cases: for MMS (CTG thje energy lost with BB’s
mapping would be 0.1 % and fauto-indust the energy loss is ~6%.

We measured the difference between the worst astirhappings found for each
benchmark by SA and OSA. With our Optimized SinmedafAnnealing, the variation
between the worst and best mappings was not hitjaer 8%. However, with SA we
obtained the highest variation to be 70% for MMST@C 1). For the rest of the
benchmarks SA did not varied with more than 6%.l&kag MMS (CTG 1), the SA
average variation was 1.51% and the OSA averagatioer was 2.56%. If we also
consider MMS (CTG 1), SA had an average variatibb.85% while OSA’s value was
less than half (2.53%). We conclude that the vianat between the best and worst
mappings are comparable for SA and OSA.

Fig. 17 shows how many times the best solutionemyilby all three algorithms,
was found by each one of them.
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Fig. 17 Best solution percentage

This chart shows that OSA finds the best solutiooremoften than SA for several
benchmarks:auto-indust telecom MPEG4, H.264 (CTG 0), VOPD (CTG 1). BB
outmatches OSA for the MMS benchmarks, VOPD (CTAHR264 (CTG 1), MWD and
consumerAnother observation is related to BB: it finde thest solution with probability
1 for all benchmarks, excegtito-industand MMS (CTG 1).

We also averaged the quality of the 1000 mappirggsbpnchmark. Branch and
Bound is the algorithm that, on average, gives rttapping with the smallest energy
consumption. It fails just orauto-industbenchmark, where OSA provides the best
average mapping cost. Optimized Simulated Annealtigeves for MMS (CTG 1) a far
better average cost compared to Simulated Anneafirage than 34% energy gain is
obtained with OSA. For the rest of the benchmaties differences between OSA and SA
are less than one percent. Compared to BB, OSAiges\solutions that are worse with
no more than 2.5% on each benchmark, exeepb-indust where OSA is better with
more than 6% than Branch and Bound.

Using 1000 simulations per benchmark, we have pusly shown that the
percentage of better solutions was lower for OSantlior SA on six benchmarks:
MPEG-4, MWD, H.264 (CTG-0), MMS (both CTGs) acdnsumerWe present here our
attempt of increasing OSA’s quality of solution ibgreasing the initial temperature. We
applied this technique on the benchmarks menti@ede, with the purpose of getting
OSA’s percentage of better solutions over SA’s @etage. Increasing the initial
temperature allows OSA evaluate more mappings.,Als® higher the temperature, the
bigger is the probability to accept “bad” movesidgrithe annealing process.

Through this technique the quality of solution four Optimized Simulated
Annealing got better, matching SA’s quality of d@u i.e., OSA’s percentage of better
mappings overcame the corresponding SA perceng&igk.we had one exception: we
were unable to obtain the desired outcome for MNES G 1). We disregard this
undesired result due to the fact that in this casegverage, SA consumes with more than
34% more energy than OSA.

Note that we have increased OSA'’s initial tempemexponentially because, due
to the OSA’s geometric annealing schedule, an esital increase of temperature leads
to a linear increase of the number of temperatwels.
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The following table presents OSA’s speedup over BAerms of runtime, and
the initial temperature required by OSA to beat SA.

Benchmark Speedup (%) Initial temperature

MPEG4 97.51 lelO
MWD 96.76 lelO
H.264 (CTG 0) 99.18 le2
MMS (CTG 0) 97.41 lel7
MMS (CTG 1) 61.40 1lel07
consumer 98.91 2

If we ignore MMS (CTG 1), we see that the speedemained high even with the
increase of initial temperature.

In order to illustrate how important OSA’s clusteyitechnique is, we present
next a comparison between OSA with and without teliisg. The single thing that
distinguishes OSA without clustering from OSA (walustering) is that, in the first case,
the simple random core swapping is used, withoutrastrictions.

The following chart shows how frequently the bssttion is found.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

\«09 't\o c.d:“ ?‘? 0“ c:&b o c:@} .;,\9 a0 c:@
39" ?«6" QS R\ A

OSAwlo E 0SA
clustering

Fig. 18 The influence of OSA’s clustering on bedilation percentage

For all benchmarks, OSA with clustering finds thestosolution more frequently than
OSA without clustering. More than this, we obsewsignificant differences for the
benchmarks mapped onto the 4x4, 5x5 and 6x5 2D mexDs. It is important to
mention that the two OSA variants find the same belution for all benchmarks, except
MMS (CTG 1). In this case, the best solution folaydDSA w/o clustering is with 0.02%
worse.

The next chart shows how much energy is consumealverage by OSA without
clustering (compared with OSA using clustering).
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Fig. 19 Average energy consumed by the mappingsioietd with OSA without clustering

It may be noticed that OSA without clustering findgppings that consume additional
energy. The clustering technique leads to lowerggneonsumption with more than 1%
in some cases. OSA with clustering always givegebawerage results than OSA without
clustering.

Finally, we present the simulation results on bigg® meshes. We used four
instances of the VOPD benchmark with 16 cores (lkg7], because applications with
a high number of cores are lacking and because referped using real applications
instead of randomly generating core graphs, likR%}, [37]) and obtained a benchmark
with 64 cores. Using SA, OSA and BB, we mappeditao 8x8 2D mesh. SA was run
ten times and OSA and BB run 100 times.

We obtained an average running time of ~ 12.65 fh@oer simulation) for SA.
OSA ran for approximately 155 seconds, while BBuremf just ~ 114 seconds.
Averaging the results from the 100 runs, OSA wa6% Jlower than BB. Still, OSA
runtime is significantly lower than CSA’s runtin750 seconds [57].

OSA consumes with approximately 39% less memory tBench and Bound.
During the 100 simulations, OSA’s peek memory comstion was 37.3 MB, while BB
required a maximum memory of 85 MB.

The best mapping was found by Simulated Annealldgwever, OSA’s best
mapping is only ~ 0.7% worse. Branch and Bounddsfiadbest mapping that consumes
around 64% more than the best mapping found byASAraging the 100 mappings done
by OSA and comparing them with the ones obtaineth BB, we have observed that
Branch and Bound obtains on average a mapping-@@8t worse.

We have aggregated all the E3S benchmarks usadr iprevious simulations and
obtained 84 cores that we mapped onto a 10x9 2.nemin, SA run 10 times, while
OSA and BB run 100 times.

SA required a very big time to run one simulatiapproximately 70 hours. OSA
ran for approximately 526 seconds, while Branch Bodnd needed only 380 seconds.
Averaging the results from the 100 runs, Optimi&ichulated Annealing was ~48%
slower than BB.

OSA consumed approximately the same of memory Bramc Bound required.
During the 100 simulations, OSA’s peek memory comstion was 62 MB, while BB
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required a maximum memory of 71 MB. We believe Braand Bound manages to keep
the memory consumption not growing exponentiallypbyning most of the search space
(we observed BB, in several simulations, to pru&8o 93% of the explored search
space).

Averaging the 100 mappings done by OSA and comgahem with the ones
obtained with BB, we have observed that Branch Bodnd obtains on average a
mapping cost ~76% worse. Simulated Annealing fotnadbest solution but, it is better
than OSA’s best solution by only 0.09%.

Using the H.264 (CTG 1), MMS (CTG 0), MMS (CTG MPEG4, MWD and
VOPD (CTG 0) benchmarks, we have obtained 97 ctiraiswe mapped onto a 10x10
NoC. Because of the huge running time SA needeth&pping the previous application,
we simulated these application with 97 cores onth WSA and BB (both were run ten
times).

Optimized Simulated Annealing run on average axprately 15.9 minutes per
simulation. Branch and Bound needed only two thotishis time: ~15.44 minutes for
each mapping simulation (OSA is only 3% slower tB&).

Branch and Bound consumed around 40 MB of memarg &ptimized
Simulated Annealing required approximately 45 MB.

Once more, OSA found every time mappings bettan tthe ones found by
Branch and Bound. Averaging the 100 mappings dgn®@®A and comparing them with
the ones obtained with BB, we have observed thabh&r and Bound obtains on average
a mapping cost ~76% worse.

By combining all non E3S benchmarks (PIP, H.264/8%4, VOPD, MWD,
MMS), we get a benchmark with 131 cores, which vegped onto a 12x11 Network-on-
Chip. OSA and BB mapped this benchmark ten times.

OSA required, on average, approximately 51 minatepping this application.
Branch and Bound was ~15% faster: it needed owlyrat 44 minutes, on average.

In this case, OSA consumed less memory, 36 MB,lewldB memory
requirements were 14% higher.

Optimized Simulated Annealing found each time appmag that consumes
significantly less memory. On average, OSA’s sohi need 79.4% less memory than
BB’s solutions.

Finally, we combined all of our benchmarks an otgd an application with 215
cores. We used OSA and BB to map it (ten times) art5x15 NoC.

Optimized Simulated Annealing run for 8.4 houns,average. OSA consumed on
average 265 MB of memory, for each mapping.

Branch and Bound run on average 3.77 hours fdr eepping. This is more than
half OSA’s runtime. Memory consumption was alsmgigantly lower: only 158 MB.
However, we obtained no solution from BB, aftertal mapping. All mapping attempts
will Branch and Bound failed. No suitable solutwas found because, each time, the
algorithm pruned more than 98.7% of the searchespélus severe pruning did not allow
BB to finish mapping the application. This leavesa believe that Branch and Bound’s
memory consumption does not grow exponentially tet,quality of solution is heavily
affected, up to the point where the algorithm duogtsgive any solution.
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7 Designing Domain-Knowledge Evolutionary
Algorithms for Network-on-Chip Application Mapping

Evolutionary Computing (EC) [59] is a part of Artial Intelligence (Al) inspired from
the evolution process encountered in Biology. Taeristic algorithms from this field of
research address NP-hard optimization problems kgns of natural selection and
evolution mechanisms. The search space is filleth wandidate solutions, called
individuals.

Evolutionary Algorithms (EAs) are used in manyeash fields to address
single-objective and multi-objective optimizatiomoplems, based on the concept of
Pareto efficiency [60].

In this chapter, we use UniMap (see Chapter 4¢ualuate and optimize two
evolutionary algorithms: an Elitist Genetic Algdwih (EGA) and an Elitist Evolutionary
Strategy (EES). After approaching our problem veithOptimized Simulated Annealing
technique, we decided to switch to evolutionaryodtgms due to their intrinsic
parallelism. Evolutionary techniques perform seascstarting (in parallel) from multiple
points in the search space. Our evaluated algositbptimize the Network-on-Chip
communication energy. We consider multiple cross@e mutation operators, specific
for permutation problems, like NoC application miagpis. Using problem specific
knowledge, we propose such context-aware operaféesshow such operators improve
the evolutionary algorithms’ performance. We try ftod out which crossover and
mutation leads to the best solutions. We also rekeahether crossover or mutation
helps more the evolutionary algorithms. These d@lgms are compared with our
Optimized Simulated Annealing (OSA) technique (Sdmapter 6). Finally we approach
our problem in a multi-objective way: besides miizimg NoC communication energy,
we also try to obtain a mapping that is thermadiahced.

The work presented in this chapter was submitted Jaly 2F' 2011) to the
Journal of Systems Architecture (JSAttp://ees.elsevier.com/[geéSince July 25 2011,
it is under review with manuscript number JSA-Da(L03.

7.1 Energy- and Performance-Aware Genetic Algorithm

We developed in UniMap an Energy- and performamneara Genetic Algorithm (EGA).
EGA is based on the Generational Genetic Algori(@®A) [61]. As compared to GGA,
EGA implements an elitist mechanism.

EGA is developed for MxN 2D mesh NoCs but, it nieeyextended to work with
other topologies as well. The algorithm uses abérgy analytical model for computing
the NoC communication energy. It considers thatéision Order Routing is employed
but, it can also generate a deadlock- and livefoe&-routing function using the turn [62]
and odd even [63] models. Additionally, network thardth constraints may be
considered.

7.2 Elitist Evolutionary Strategy

Elitist Evolutionary Strategy (EES) [59] is availalin jMetal. We adapted this algorithm
to our problem by using the same energy-awared#fienction like in the EGA case.
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7.3 Developing Problem Knowledge Crossovers

This section presents the crossover operators usdtlis research. We work with
crossover operators for permutation problems. Therenany such operators in literature
(order, inversion, cycle etc.) [64]. We used PositBased Crossover and Partially
Mapped Crossover. Position Based Crossover (PB)diBbs keeping absolute position
information during the recombination process. RiytiMapped Crossover (PMX) [66]
tries to preserve genes’ order, adjacency andiponsss much as possible. PMX is one of
the most used crossover operators for permutatioimgms [59].

Next, we present two new crossover operators tieaprepose for the Network-
on-Chip application mapping problem.

7.3.1 NoC Position Based Crossover (NPB)

NoC Position Based Crossover (NPB) extends PB atothie cores that are kept fixed are
not selected randomly. We rather keep fixed the dpuit cores, i.e. the cores which
communicate the most data.

Our approach, based on hot spots, is similar & approach from [67]. The
difference is that, we do not simply swap the hpmtt£ore with a randomly chosen core;
we rather fix the first half of the most communingtcores. While the crossover from
[67] behaves as a swap mutation, NPB acts as &éidPoBiased crossover, with context-
awareness.

7.3.2 Mapping Similarity Crossover (MS)

Our developed Mapping Similarity crossover (MS) hilas purpose of identifying the
topological similarities between two (parent) maygs and replicating them in the
offspring. MS has two phases. The first phase toeslentify the mapping similarities
between the two mappings. By doing so, the comnhamacteristics of the two mappings
are identified. The cores mapped in a similar walgath parents are mapped the same in
the two children: child 1 maps the similar coré® Iparent 1 and child 2, like parent 2.
We should point out that the offspring keep the smn characteristics of their parents,
either good or bad. The goal of the first MS phas® decide which genes the offspring
inherit from their parents. MS attempts to imprdte offspring through a secondary
phase, which performs a greedy mapping for the oe$he genes. This phase tries to
raise the children fitness by rearranging the cadgish are not mapped similarly, hoping
they will be placed better with respect to the Bmecores.

We argue our MS crossover operator does not siraptyas a swap mutation
operator like in the research of Ascia et al. [G88], [67]. MS instead tries to identify
mapping similarities, which are inherited from boparents. This emphasizes the
crossover character.

7.4 Mutation Operators

This section presents the two mutation operatoed us this research. We chose to work
with swap mutation, which is a very common geneperator in permutation problems.
It simply interchanges two randomly selected genes.

Using our developed Optimized Simulated Annealahgorithm as a mutation
operator we obtain a hybrid algorithm: an EvoluéinnAlgorithm which incorporates a
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Simulated Annealing technique. OSA performs a odragvare mapping and outputs two
cores which must be swapped. It performs an imagiach time it gets called by the
Evolutionary Algorithm. When the number of iteraito reaches OSA’s number of
iterations per temperature level, the annealingptature is decreased.

By using OSA as a mutation operator, we proposegusybrid algorithms for
NoC application mapping. More precisely, we have meta-heuristic, with an
Evolutionary Algorithm as the main algorithm. Thé Encapsulates a NoC specific
algorithm, as a mutation operator (OSA). This apploallows us to benefit from the
intrinsic parallelism that EAs contain. Also, thepkration has context-awareness,
through the proposed mutation. The mutation maydormed by any algorithm for
NoC application mapping. Any EA using a mutatiorigtor may be used.

7.5 Multi-objective Optimization

NoC communication energy is minimized by placing #tommunicating IP cores as
close as possible, onto the NoC tiles. Since wendeeested to evaluate the performance
of the genetic operators used in this researchdava multi-objective optimization, too.
Our second objective is to do a thermal-aware phaee of the IP cores. Uniformly
distributing the IP cores’ temperature across #tevark leads to the minimization of the
hotspot temperature. Two IP cores that consumefisgnt power should be placed at a
greater distance from one another. However, thisns@ur thermal balance objective is
in contradiction with our energy objective.

7.6 Experimental Results

We present next only the most representative esalitained with our research on
domain-knowledge evolutionary algorithms for Netlwon-Chip application mapping.
Our entire set of results is available in [69].

We start by measuring the mapping cost found fahdaenchmark. Since (in
order to improve the accuracy of our results) we the@ same application multiple times,
we obtain an average mapping cost (energy). Wesgeh average cost for every
evolutionary algorithm, with every crossover operand for each mutation probability.
For EGA with MS crossover and OSA mutation, we diisot the similarity function to
the IP cores that are one — EGA-MS-OSA (1) — or lps away — EGA-MS-OSA (2).

We work with the metric that we callormalized Absolute Deviation (NAD)
from the minimum (in this case the minimum average energy). Thigime based on
the statistic absolute deviatioA[}) metric. Because we deal with a minimization
problem, we consider the absolute deviation from inimum average cost from the
entire data setg). Then, we normaliz&D by dividing it to max{X,} (the maximum

average cost from the entire data set). Theretbeenormalized absolute deviation (of

: - : X, —min{X,} :
data poink, [X,) from the minimum iNAD, =——————. The indexb, marks a
" " max{X,}
benchmark evaluated with an algorithm with at aasermutation probability. For each
benchmark, we obtain its NAD, at every mutatiom rassing the above formula. The data
setX, contains the average mapping energies obtainedl leyolutionary algorithms, for

the specified benchmark. At each mutation level, average the NADs of all our
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NAD_ +NAD, +...+ NAD,

B
being the number of benchmarks andn the mutation probability
(mO{10%,20%,...100%} ). We use this metric because directly comparirgyaherage

energies obtained for different applications iseasible since each application has its
own energy domain (which usually differs signifitdgh

Fig. 20 presents how much the average mappingdessates from the minimum
average cost, found by all algorithms. We show rémsults obtained only for the big
benchmarks (VOPD 4xall-mocsyn 97-cores 131-coresand 215-core$ because our
evolutionary algorithms perform similarly on thesteof the benchmarks (in terms of
average mapping cost). For every algorithm, onéygbint corresponding to the mutation
probability where it performed best is shown.

benchmarks. Therefore, we haigerageNAD,, = ™, with B
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Fig. 20 Algorithms’ comparison based on their averge normalized absolute deviation, from their
common minimum average cost (only big benchmarks)

It may be easily observed that all algorithms penfesignificantly better with OSA
mutation than with swap mutation. EES-OSA has timallest deviation, among all
algorithms, followed by EGA-PMX-OSA. EGA-MS-OSA the next best performing
algorithm in this case. We even notice a slightiytér performance for EGA-MS-OSA
(1) (1.64% deviation) than for EGA-MS-OSA (1.77%vidion). However, EGA-MS-
OSA (2) performs much worse (3.21% deviation, &2%Q0mutation probability). After
EGA-MS-OSA we have EGA-OSA and EGA-NPB-OSA. EGA-O&Athe algorithm
that gives the smallest deviation at the lowestatmn rate: 30%. EGA-NPB-OSA is
better than EGA-MS-SWAP. Still, EGA-MS-SWAP clealigats OSA, making MS the
only crossover than outmatched OSA with both matabperators. Mapping Similarity
is the only crossover operator that performed veglardless of the mutation operator. PB
crossover also does not provide bad results butjs®early better (EGA-SWAP has a
3.52% deviation, with only 0.02% smaller than OSA®&viation). The performance of
our other crossover operator, NPB, is not good wiliencompare it with PB. In both
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cases (OSA or swap mutations), NPB performs wdraa PB. However, we observed

(on all benchmarks) that NPB performed better agtteb as mutation grew. It performed

best at 100% mutation probability (similarly to PMXPB performed best at 80%

mutation (on all benchmarks). Raising the mutatitade PB perform worse. EGA with

MS performed best at 50% - 60% mutation rate, dtvehchmarks. We may conclude

that MS is the crossover operator that contribtitesmost at obtaining a good average
mapping cost. The rest of the operators rely siggnitly more on the mutation operator.

In conclusion, in terms of average mapping cts, Elitist Evolutionary Strategy
with OSA mutation performs the best. The Energy fen@enetic algorithm has the best
behavior with OSA mutation and with PMX crossov@ur developed Mapping
Similarity crossover gives similar results: its madized absolute deviation is with only
0.25% worse than the one of PMX. NPB performs wamsethe big benchmarks. Its
deviation is with 1% higher that the one of PMX.

Next, we are interested to find how good are th& beappings found by each
algorithm. In order to compare the best solutioosnfi by all algorithms, we have
identified for each application the best solutioarid by all algorithms. Then, for each
application, with each algorithm and mutation ptabty, we have computed the
additional energyAE) its best mapping consumes, with respect to tse dmution found
by all algorithms. Using the same notation like MAD computation, we define the

. _ X, —min{X.} . .
Additional Energy metric a8, =——————. In this case however, we work with a
" X

bm

different data setX, contains the minimum mapping energies (not theamesones, like

in the previous case). Finally, like for averageAve averaged the additional energies
for all benchmarks. The following chart presentssth results. We show for every
algorithm the value at the mutation level wherehtained the lowest average additional
energy.
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Fig. 21 Average additional energy consumed by thesst mappings found by each algorithm,
compared to the best mappings found by all algoritins

EGA-MS-OSA is the algorithm that has the most maggithat are the best. On average,
the best mappings found with this algorithm introeljust 0.29% additional energy. Very
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close to this result is EES-OSA, with 0.3% addisbenergy. After EGA-PMX-OSA
(0.36%), follow EGA-NPB-OSA and EGA-MS-OSA (1), bowith 0.52% additional
energy. Note that all the algorithms except EES-$\ahd EGA-PMX-SWAP find, on
average, better mappings than OSA. This chartdisws that swap mutation produces
worse mappings than OSA mutation, regardless theritim. However, there is an
exception: EGA-MS-OSA (2) does not produce bettappings than all algorithms with
swap mutation.

We conclude our solution quality based analysisshgwing how often each
algorithm manages to reach the best solution. Viég te the best solution found by all
algorithms, not to the best solution each algoritttund. Hence, it is possible an
algorithm has a zero best solution percentage. ¥meal the Averaged Best Solution

+ +...+
BS, BSZT3 .+ BS; %), BS, is
the Best Solution percentage for benchmiarlat mutation levem. It represents how
many times an algorithm finds the best mappingndéoloy all algorithms.

On the big benchmarks, OSA is unable to find test Isolution. Also, not all of
the evolutionary algorithms manage to reach theé sastion. This may be seen in the
following figure.

percentage at mutation rate asAverageBS, =
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Fig. 22 Average best solution percentage on big bemmarks

EGA-NPB-OSA is the algorithm that has the highesdtlsolution percentage, which is
22% at 90% mutation probability. EES-OSA and EGAAOfave a value of 20%. Than,
with just 2%, we have EGA-PMX-OSA, EGA-MS-OSA an@GGA-MS-SWAP. We
notice all the algorithms using swap mutation amahble to reach the best solution. The
only exception is EGA-MS-SWAP.

Our conclusion is that NPB crossover gives the bekition percentage, on the
big benchmarks. Mapping Similarity and PMX crosssvgive a similar best solution
percentage. OSA mutation is essential for EES lscamith swap mutation EES
performs worse even than EGA with NPB crossoversavap mutation.
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Regarding the optimal mutation probability, we alied there are algorithms,
like EGA-NPB-SWAP, for which we obtained exactlytiame mutation rate. However,
in general there is no ideal mutation probabil@ur experiments indicate the optimal
mutation probability may vary from 20% up to 100Far EGA-MS-OSA, we got the
same optimal mutation probability in terms of ageraand best mapping cost. We
conclude that mutation probability is applicatiomdaalgorithm dependent. The lowest
mutation rate is consistently encountered when ingrkvith our developed Mapping
Similarity crossover. This indicates MS is the smger operator that relies the least on
mutation to find the best NoC application mappiige tried to limit the similarity
function of MS by considering only the cores white one or two hops apart in the
NoC. Overall, we did not obtain significantly bettesults. EGA-MS-OSA (1) and EGA-
MS-OSA (2) require a higher mutation probabilityfamction optimally.

We present next how some of our algorithms convergiene. Since the previous
results showed us that OSA mutation gives bettsult® than swap mutation, we focus
only on these algorithms: EGA-OSA, EGA-PMX-OSA, EGWB-OSA, EGA-MS-OSA
and EES-OSA. We ran each of the five algorithmslfa®0 generations per application.
To improve the accuracy of our simulations, we eash application for 100 times (by
setting the random number generator seed from 10@). Finally, we averaged the
energy cost of all 200 mappings per application p&dgeneration. We worked with the
mutation values determined by our average cosyasisal

Fig. 23 shows how the five algorithms converge an lmggest benchmark. We
mention that for all the other benchmarks we olet@ithe same behavior, as we will
detail next.
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Fig. 23 Algorithms’ convergence for 215-cores benatmark
All algorithms manage to reduce the mapping ensiggificantly, within the first 100

generations. EGA-OSA has the lowest convergencedsigGA-PMX-OSA, EGA-NPB-
OSA and EES-OSA behave approximately the same. HISAOSA is the algorithm that
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converges the fastest during the first generatidxiter that, its convergence speed
decreases and it is outrun by EGA-PMX-OSA, EGA-NBBA and EES-OSA. We
believe this is justified by the greedy approaamfrthe second phase of our Mapping
Similarity crossover.

We measured when each algorithm reaches its lodgtion during the 1000
generations, for each benchmark and we averagecesudts. EGA-OSA converges in
732 generations. It requires the most number okiggions to obtain its mapping with
the best communication energy. EGA-MS-OSA converges 562 generations.
Algorithms EGA-PMX-OSA, EGA-NPB-OSA and EES-OSA veg 475 generations.
EES-OSA is the algorithm that, on average, hasféiseest convergence speed (424
generations).

Finally, we switch from a single objective to mwibjective Network-on-Chip
application mapping. Besides minimizing communmmatienergy, we are now also
interested in obtaining a thermal balanced NoC giesUsing NSGA-Il and SPEA2
genetic algorithms implemented in the jMetal lilyyaaugmented with all our genetic
operators, we evaluated NoC mappings &irmocsyn This is the benchmark that
contains all E3S applications. For E3S we know mauch power the IP cores consume
to execute a particular task. Each algorithm racepnvith each crossover — mutation
combination, for 1000 generations. Each time waedgrom the same initial population.
We used the optimal mutation probabilities deteedirby our average mapping cost
analysis.

Fig. 24 shows, for every algorithm, the (normalizlypervolume [60] obtained
at each generation. For a minimization probleme(bkirs), the hypervolume is defined as
the volume enclosed by the Pareto front and aesber point. The coordinates of this
point are determined by the maximum values of thgeatives. The values are also
normalized using the (constant) volume betweenctierdinate systems’ origin and the
hypervolume reference point.
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Fig. 24 (Normalized) hypervolumes, for all evaluaté algorithms

The hypervolume grows significantly until the fireDO — 300 generations, for all
algorithms. Then, it keeps growing slowly until tlast generation. This indicates how
the algorithms converge. The algorithms using oawetbped Mapping Similarity
crossover have a very fast convergence speed withifirst 100 generations. However,
in the end, their hypervolumes are the smallests Tidicates MS leads to the worse
performance in this multi-objective case. Howevewe want fast results, then this will
be a suitable crossover. Looking at the hypervolwalees within the last generations,
we ordered the algorithms. This order may be seethe chart's legend. It may be
observed that PMX performs the best. It is folloviegd\PB, PB and finally MS. We also
observed that both NSGA-II and SPEA2 performedebatith PMX and swap mutation.
The performance with OSA mutation was worse. ThesHi-objective results appear to
be in contradiction with our previous single-objeetresults. The explanation resides in
the fact that our two objectives are in a mutuaiteiction. OSA mutation, MS and
NPB crossover work to optimize energy but, thislioity leads to worsening the NoC
mappings in terms of thermal balance. NPB is mavigalle than MS (in this case)
because it just identifies hot spot cores, in teofmsnergy. However, they may also be in
terms of thermal balance because a highly commtingcaore might also have a higher
temperature.

Fig. 25 shows the Pareto front obtained in thé dameration by combining the
Pareto fronts of all the evaluated algorithms. Tdombined Pareto front holds only the
non-dominated individuals from all the merged Rafaints.
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Fig. 25 Combined Pareto front (generation 1000)

It may be seen that PMX is the single crossoverldzals to the best solutions, found by
either NSGA-Il or SPEA2. We also observe thereaatat of good solutions in terms of
energy. All these mappings were found using OSAatn. With swap mutation, we
managed to find three good solutions in terms efrttal balance. The significantly
higher number of good energy-biased solutions atd& the fact we tried to optimize
only energy with NoC application mapping knowledgeobably using a crossover which
also optimized energy was too much bias towardsglesobjective. This is how we
explain PMX was the best performing crossover. AmywPMX was one of the best
performing crossovers in the single-objective ctse,
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8 Application Driven Automatic Design Space
Exploration for System-on-Chip Architectures

In this chapter we propose a method for performamgapplication driven automatic
design space exploration for System-on-Chip (Sa@)igectures. We integrate UniMap
with a Framework for Automatic Design Space Expgiora (FADSE) [70] with the
purpose of automatically finding the best SoC dedy any given application, in a
multi-objective way. Our objectives are: SoC enempnsumption, SoC area and
application runtime.

Using UniMap’s features, we simulate an entire cotimg system, consisting of
tens of heterogeneous IP cores that are mappedhfmtmdes of a Network-on-Chip.

FADSE automatically configures this System-on-Cliighen simulates it using
UniMap’s simulator and gives the simulation restdtshe DSE algorithm that drives the
search process.

We show a feasible DSE workflow that meets our irequents and we identify
the most suitable SoC architectures, for a givepliegtion, in terms of energy, area and
runtime. We also compare four DSE multi-objectivgoathms (two genetics and two
bio-inspired) with the purpose of identifying thgaithm that performs the best.

8.1 Framework for Automatic Design Space Exploration

The Framework for Automatic Design Space ExploratiGrADSE) [71], [72] is
developed by Horia Calborean from “Lucian Blaga”iwémsity of Sibiu, Romania, as
part of his PhD thesis [70]. FADSE is a client-ggrtool that includes many state of the
art algorithms through jMetal [73]. FADSE was swsfally used for a multi-objective,
hardware-software co-design exploration of the glesipace for a superscalar system
[74], [75].

8.2 Design Space Exploration Workflow

Our DSE workflow starts with mapping applicationat@ NoC architectures using
UniMap’s algorithms. The mappings are evaluated bgtimating the NoC
communication energy with an analytical model. Blest solutions found are saved into
a database.

For each application, FADSE searches for the $e6€t design by considering the
first ten best mappings (a higher number of begppimgs may be used depending on
how many resources are available). Note that wecs¢éhese mappings from all best
mappings found by all UniMap mapping algorithmsm8lated Annealing, Branch and
Bound, Optimized Simulated Annealing and Elitist négc Algorithm and Elitist
Evolutionary Strategy, with all their variants, &wated in Chapter 7.

Then we configure FADSE to start a DSE processedrby a multi-objective
algorithm. FADSE evaluates different System-on-Clnighitectures. Firstly, it selects the
type for each IP core. The given mapping alreadytains information about what IP
core will execute what task. However, FADSE will with other compatible IP cores as
well. Any IP core capable of executing a task isstdered compatible with that task.
Note that the analytical model used for obtaining best mappings does not account for
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IP core types. Secondly, it instantiates a SoCitature by placing the selected IP cores
onto the nodes of a NoC that it configures. Finatlgalls UniMap’s ns-3 NoC simulator.
We model the tasks’ execution using Finite State cif@es. The network
communications are created using our network tragénerator. ns-3 NoC measures
application runtime, SoC energy and SoC area. Taesthe three objectives of our DSE
workflow.
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Save best
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- T _Fig._26 Aﬁlicaﬁn driven DSE workflow for SoC degns

We use the E3S [44] IP core library, which providista about the power
consumed by each core while executing a certaik & while idle and the area
occupied by every core.

For our NoC architecture, power and area metriesvaasured using ORION 2.0
[45], which is integrated with UniMap’s NoC simuwat(see section 4.2). We work with
the Network-on-Chip total power, which includeskage and dynamic power for routers
and links. Similarly, NoC area is the sum of rositend links area.

We measure application runtime by running the apgibn for a specified
number of CTG iterations. We determine the numle€ DG iterations empirically, so
that the simulations run fast enough so that out P&cess ends in a feasible amount of
time.

The output of this workflow is a Pareto front withe “best” (near optimal) SoC
configurations, for a particular application.

In the next section we give details about how #yawe performed the
simulations, on which benchmarks, what archite¢tpeaameters we varied and how
UniMap and FADSE were configured. We must point thatt, during the workflow, the
NoC topology is kept unchanged. This is becausetdpelogy is basically the single
NoC architectural element used by the mapping dlgus. Changing it would lead to
inconsistencies, i.e. doing and comparing mappfoggifferent NoCs. Obviously, our
workflow may also be applied for different NoC tépgies. By doing so we could also
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determine the most suitable NoC topology. Howeteils would require adapting our
application mapping algorithms for these other No@ologies. Only then we will be
able to obtain the best mappings for other NoC ltges.

8.3 Experimental Results

We show next some preliminary results obtained wailr previously presented
application driven design space exploration teamitpr System-on-Chip architectures.
We managed to explore all ten best mappings jushitelecombenchmark. For the rest
of benchmarks we explored only the first best magpi

We start with théelecomDSE. In the next figure we use the hypervolumerimet
to show how our four DSE algorithms progress whéarching for the best SoC designs
for thetelecombenchmark. We obtained hypervolumes for each O§&ithm, on every
one of the tetelecommappings. Then we computed the average hypervolume
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Fig. 27 Average hypervolumes over all ten best telem mappings

It can be seen that the two genetic algorithms (A$iGand SPEA2) obtained the best
hypervolumes. NSGA-II has a slightly faster conesrce speed than SPEA2. In the last
ten generations, both of them saturate; they ngdofind significantly better solutions.
SMPSO performs better than OMOPSO but, both PSOriigns perform worse than
the genetic algorithms in terms of solution qualitye used the same hypervolume
reference point). However, they have the fastesivegence speed. Only after 8-9
generations the genetics recover and surpass thaRBrithms.

We also compared the four algorithms using the @me metric (results are
omitted due to space constraints). We concludetdSR&EA2 has the best overall results.
The following figure shows the Pareto front obtaingith SPEA2, by combining the
Pareto fronts from all tetelecommappings.
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Fig. 28 SPEA2 Pareto front, for telecom

We observe that the Pareto front contains solutitome all eight of the ten bestlecom
mappings. We obtained the best energy consumptiin tie eight mapping. The
smallest area was given by mappings three and\fh exactly the same area, the third
mapping has a better energy, while the fifth h&gter application runtime. Finally, the
lowest application runtime was found on a SoC des@responding to mapping eight.

It is interesting to see that we did not obtaia tiest energy with the first best
mapping, which analytically gave us the lowest Nlm@hmunication energy. This can be
due to several facts. Firstly, we analytically mstied only the NoC communication
energy. With this approach we compute the entir€ 8oergy (IP cores energy is also
included). Secondly, the analytical model is unataecapture the dynamic network
effects (network congestions). Thirdly, FADSE daes obviously perform an exhaustive
search. It is possible that we might get bettergyneesults with mapping one than with
mapping eight. This shows the need to perform bettploration of the design space.
Using domain-knowledge to constrain the searchespad applying fuzzy rules are two
approaches that could improve the DSE techniqul [70

Finally, we combined all the Pareto fronts obtdimeth all our algorithms, for all
tentelecommappings.
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Fig. 29 Combined Pareto front for telecom benchmark

It can be observed that all the solutions foundh8MPSO and OMOPSO are dominated
by the solutions found with the genetic algorithmé#ile in terms of SoC area the best
solutions are the ones found with SPEA2 (with magpi3 and 5), in terms of energy and
runtime, NSGA-II found, with mapping six, bettersutts than SPEA2 (with mapping
eight).

The following table summarizes the best SoC deasiigund for thetelecom
application. Due to space constraints, we do notvstine 30 IP cores selected for every
SoC architecture.

Objective | Algorithm | MaP NBOUf%fpargi[n etggfkl?t ; eﬁeorc groe(; Ap%“r?a“
] 9 ping | Frequency | “& size ciye | Routi [Joul%s]/ (mm A runtime
MHZ] | i) | [oytes] | [iits] | M9 [ms]
Energy NSGA-II 6 100 4 4 10 YX 0.09516 | 50.11 | 46.1144
Area SPEA2 5 200 1 4 10 XY | 0.15818 | 37.37 | 46.1132
Area SPEA2 3 400 1 4 10 YX 0.16793 | 37.37 | 46.1111
Runtime NSGA-II 6 900 4 32 6 YX | 0.34191 | 81.22 45.4

The lowest energy was obtained (in accordance with intuition) when the NoC
operated at the lowest frequency allowed by our D&Ekflow. The SoCs with the
smallest area use some of the smallest IP corss, &le NoC buffers are only one flit in
size. As compared with the best energy and runBm€ designs, the two area designs
use only 25% NoC buffering resources. The two desigvith the smallest area
essentially differ by the NoC frequency. The fagsiee uses a NoC that is twice faster.
The SoC with the best runtime rutedecomwith more than half a millisecond than the
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other three SoCs, which are differentiated in teainspeed by only a few fractions of a
microsecond. The best runtime SoC architecture ralgoires a much faster NoC. It also
operates with bigger packets. All these reflectonsiderably higher energy and bigger
area. Finally, we also observe that routing al$lo@mces the architecture’s performance.
Our best SoC designs ftelecomuse both XY and YX routing protocols.

Now we continue with the MPEG-4 DSE. The followifigure presents the
hypervolume of each DSE algorithm, for the best IBPEmMapping found analytically.
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Fig. 30 Hypervolumes for the first best MPEG-4 mapmg

The results obtained fdelecomare consistent with the ones presented here. Again
two genetic algorithms perform better than theiplartswarm optimization algorithms.
NSGA-II converges faster than SPEA2. In terms oéliqy of results it seems that
NSGA-II is the best. Again, SMPSO performed betitan OMOPSO. Like fotelecom
MPEG-4 results show us that it matters more thesscléne algorithm belongs to
(evolutionary or bio-inspired), rather than the@fpe implementation.

We computed the coverage, trying to choose the dgetithm from each class.
The results are presented in Fig. 31 and Fig. 32.
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Fig. 31 Coverage comparison between NSGA-Il and SP2, for MPEG-4

For the first generations no clear distinction tenmade between the two algorithms.
However, looking at the last generations, we cahelthat there are more individuals
produced by SPEA2 that dominate the NSGA-II indinl$. This contradicts the
hypervolume chart where NSGA-II seemed to perfoetidn. We thoroughly analyzed
the Pareto fronts obtained by the two genetic #@lyms. Some of the solutions
discovered by NSGA-II are better than the onesinbthby SPEA2 and some are worse
(in accordance with the coverage metric). It isdhtar establish the best one because it
depends on the requirements of the designer. 8i#l, results obtained by NSGA-II
seemed a little more spread in the objective space.

The same behavior can be observed between OMOREGMPSO. SMPSO
performed better from the hypervolume point of vidwt here OMOPSO is the best.
Again, we analyzed the Pareto fronts approximatardsfrom our point of view SMPSO
had better results. We emphasize that this is geectile appreciation and for other
designers the order might be changed.
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Fig. 32 Coverage comparison between SMPSO and OMOPRSfor MPEG-4

For our last comparison we selected the best &hgosi from the coverage point of view:
SPEA2 and OMOPSO. In the next figure we presenttwerage comparison between
the two algorithms. SPEA2 is clearly the best, lmmuhating almost 100% of the
individuals found by OMOSPO. OMOSPO does not doteirEmost any individuals
obtained by the genetic algorithm. It is interegtio observe that OMOPSO is better for
the first generations. This is because of the fastvergence speed of the PSO
algorithms.
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Fig. 33 Coverage comparison between SPEA2 and OMOPRSfor MPEG-4

The following figure presents the most spread t®ai®nt, which was obtained

by the NSGA-II algorithm. Through interpolation va¢so obtained a surface grid that
gives us a better view of the Pareto surface.
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As expected, it can be observed that there is @ d&sign for the MPEG-4 application
that is best for all three objectives. The fastiestigns consume more energy and occupy
more area. The slowest architectures consume hesgyeand need less area. In between
we have a lot of solutions that are better for gn@nd worse for area and vice versa.

We conclude this preliminary research by presentighypervolumes obtained
for the first best analytical mapping of H.264 ardPD benchmarks.
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Fig. 35 Hypervolumes for the first best H.264 mappig
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These H.264 and VOPD hypervolume results are iretaion with our previous results.

Our conclusion is that the genetic algorithms foatter solutions than the particle swarm
optimization methods. The PSO algorithms manag®twerge faster only for the H.264
decoder. For VOPD, SMPSO performs clearly bettan t@MOPSO. We also observe an
unsteady convergence speed for the PSOs. For a larmber of generations their
evolution is insignificant. Then, they manage todfiat least one significantly better
individual, which makes their hypervolume grow getble.
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9 Conclusions and Further Work

This work addresses the Network-on-Chip applicatioapping problem. After we

introduced the novel Network-on-Chip paradigm ina@fer 0, we focused on the
mapping problem. Chapter 3 presents the problemgaWith a state of the art on the
heuristic algorithms used to address it. In Chagtere show our developed unified
framework for the evaluation and optimization oftMerk-on-Chip application mapping

algorithms. In Chapter 5 we presented the bendksnased in our research, in this
emerging NoC research field that still lacks a déad benchmarking methodology. With
UniMap, we evaluated and optimized a simulated alnmg algorithm using a domain-
knowledge approach (Chapter 6). We also evaluated optimized evolutionary

algorithms by proposing problem aware genetic dpesgChapter 7). Finally, in Chapter
8, we proposed and used a design space explomatdiflow for an application driven

automatic design space exploration for Systems4aip-GOur algorithms’ evaluations

were performed using both analytical models anduksitars. We considered single and
multi-objective approaches.

More precisely, this thesis makes the followingtobuations:

* An introduction to Network-on-Chip architecturesthvan emphasis on the most
common network topologies and routing protocolsiueehis research field,;

» Taxonomy for the classification of Network-on-Chigpplication mapping
algorithms;

= State of the art regarding algorithms for Network&@hip application mapping;

= UniMap: a developed unified framework for the ewadion and optimization of
NoC application mapping algorithms;

= UniMap runs on High Performance Computing Systesiagujob schedulers to
automatically and optimally distribute simulations;

= Common model based on XML schemas for represeméat applications and
networks;

= UniMap integrates state of the art NoC applicatroapping algorithms like
Simulated Annealing and Branch and Bound;

» UniMap integrates jMetal, a library with single ebjive and multi-objective state
of the art evolutionary algorithms, which can bediss application mapping
algorithms;

» ns-3 NoC, our developed Network-on-Chip simulatavijth two router
architectures, three routing protocols, three gviitg mechanisms and k-ary d-
cube topologies;

= Network traffic generator based on communicatiotigpas of real applications,
described through Communication Task Graphs andiégijpn Characterization
Graphs;

» ns-3 NoC integrates ORION 2.0, a state of the @ot for Network-on-Chip
power consumption and area estimation;

» Using ns-3 NoC, we showed that the Irvine architexthelps at decreasing the
network congestion. The network is significantyd congested when data flits
are transmitted faster than head flits;
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With ns-3 NoC, we showed how increasing the netwmriers’ size improves
the NoC'’s average packet latency;

Using ns-3 NoC, we evaluated different network tog®s: 2D mesh, 2D torus,
3D mesh, 3D torus and hypercube. We concludedttpatiogies like tori and
hypercube can give better NoC performance than esesdn;

UniMap integrates the E3S benchmark suite and safrtiee most used CTGs and
APCGs available in literature. Because NoC benckimgris still work in
progress, we effectively created our own benchraaite;

We propose and use for Network-on-Chip benchmarkiwg communication
patterns taken from a H.264 decoder system availalthe research community;
Using domain-knowledge, we developed an Optimizéthugated Annealing
(OSA) algorithm. It performs a dynamic and implicitre clustering and limits
the number of iterations per annealing temperatased on the given application
and network.

We showed that Simulated Annealing can be feasibie NoC application
mapping when domain-knowledge is used. OSA is apmrately 99% faster than
a generic Simulated Annealing algorithm, withowgithg the solution quality;

The results obtained with OSA showed that Simul#®&edealing is feasible for
NoC 2D meshes larger than 10x10. Previous resesatdd the contrary;

OSA is comparable to Branch and Bound in terms efmory consumption and
speed. It mapped 97 cores on a 10x10 2D meshimeasiower by only 3% than
the time required by Branch and Bound;

As the problem size increases, OSA gives signifigabetter solutions than
Branch and Bound. The mappings found with BranahBound were with more
than 70% worse than OSA’s mappings when working) wibre than 64 IP cores;
We showed Branch and Bound’s limitations. This atgm was unable to map
an application with 215 cores, onto a 15x15 NoCahse more than 98% of the
search space was pruned;

We developed an Elitist energy- and performanceraw@enetic Algorithm
(EGA). EGA is integrated in jMetal;

We extended jMetal with the Position Based crossove

We evaluated EGA and an Elitist Evolutionary Sgst€dEES) using different
genetic operators (four crossovers, two mutationd Zalgorithm variants);

We concluded that evolutionary algorithms are sopé¢o algorithms like OSA,
for NoCs with tens, hundreds of nodes. We foundl floathe big benchmarks, all
the best solutions were given by evolutionary atgars (none by OSA);

We proposed a meta-heuristic algorithm consistihgroevolutionary algorithm
that uses as mutation operator a state of theplication mapping algorithm;
EGA and EES work better with OSA mutation than wstkiap mutation. OSA
integrated successfully into the Evolutionary Algams;

We designed two problem specific crossover opesatdoC Position Based and
Mapping Similarity. NoC Position Based crossoverpiaves the standard
Position Based crossover for our problem. Mappingil8rity crossover
exchanges information between the parent indivglualdoes not simply work as
a mutation operator, like the other state of the NwC application mapping
crossover operators do;
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= With NoC Position Based crossover, EGA had the salsition percentage on the
big benchmarks;

= We found Mapping Similarity to be the crossover rapar that contributes the
most at obtaining a good mapping. It performed l@s50% - 60% mutation
probability. The rest of crossovers required highetation rates;

= We found EES to perform better than EGA. Althoughmanaged to improve the
genetic algorithm through our crossover operatsg)g an algorithm that works
only with (context-aware) mutation proved to betéret Finding a suitable
context-aware crossover for NoC application mappmgnore difficult than
finding an efficient context-aware mutation;

= EES with OSA mutation was the algorithm that madageconverge the fastest;

» Using two state of the art multi-objective algonitt (NSGA-11 and SPEA2) with
our genetic operators, we evaluated (with analyiiclels) the mappings in terms
of NoC communication energy and NoC thermal balafbe two objectives are
contradictory and, as such, our developed operatasnot lead to the best
performance. However, we did find the best soljdn terms of energy, with
OSA mutation. A suitable crossover operator for N@®C application mapping
problem is even more difficult to find if we consrdmulti-objective optimization;

»= UniMap connects with the Framework for Automaticsigm Space Exploration;

= We proposed an application driven automatic DesBpace Exploration
technique for System-on-Chip architectures. Thel geathat, for a given
application, to automatically determine the bestt&y-on-Chip design, with the
following objectives: SoC energy, SoC area andiagfibn runtime;

= Using our developed ns-3 NoC simulator and FADSE, explored the NoC
architectural space for different real applications

= We showed that the best analytical mappings arenaoéssarily the best ones
when using a NoC simulator;

» The genetic algorithms (NSGA-II and SPEA2) wereadle more suited for our
design space exploration workflow than the partsskeam optimization methods
(SMPSO and OMOPSO). Still, the PSO algorithms coyee faster.

As future work, we intend to improve UniMap. We arderested in extracting
communication patterns from parallel applicatiombe first step will be to integrate
CETA tool. This will allow us to obtain Communicati Task Graphs from shared
memory parallel programs. The second step willdsitnilarly use an MPI library that
allows intercepting the communications from messagsing parallel applications.

Another direction for extending our unified franmw is to implement other state
of the art Network-on-Chip application mapping algons. For example, the
comparisons between OSA and Cluster Simulated Amge§b7] runtimes are very
likely to be unfair. This can be due to severaboses: (1) OSA is written in Java but, we
do not know yet how CSA is implemented, (2) OSAieergy aware and uses the cost
function from [25], while CSA is bandwidth and laty constrained, using the cost
function from [76] and (3) CSA does not specify thamber of generations per
temperature level.

Also, we consider further improving our developeaQ\simulator. Improving the
router architecture with virtual channels and alocs is an example. This will bring our
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router implementation closer to real router designs

Regarding our developed crossover operators (se#oB€/.3) they are suitable
only for the communication energy objective. Theysinbe adapted to work in a multi-
objective case. Even OSA mutation was designed daly energy minimization.
Therefore, evaluation and optimization of such atgms, in a multi-objective context
will be more difficult. Using standard crossoverdamutation operators simplifies the
problem a lot but, such operators are not awatbeoproblem.

We also plan to continue our research regardindicagtion driven automatic
design space exploration for System-on-Chip archites (see Chapter 8). The presented
results are still preliminary. We intend doing maienulations so that we identify the
best SoC designs for applications other ttedacom too. We also intend to do a more
accurate modeling of our SoC designs by increasiagccuracy with which we simulate
the IP cores and by varying the NoC topology ad.w for the design space explorer,
we intend to use more domain-knowledge so thatameconstrain and better explore the
huge architectural space. We believe our approach be extended for performing
automatic design space exploration for High Peréaroe Computing systems.

Finally, we refer to a research niche that we idiext during this PhD thesis but,
unfortunately we have not had enough time to exmoyet. We believe that Network-
on-Chip application mapping problem can be addressseng graph theory. More
precisely, we refer tgraph isomorphism, which is the problem of verifying if two
graphs are actually the same. Two graphs(Va, Ea) andN = (Vy, Ey) are isomorphic if
and only if there is &ijectivemappingM :V, -V, between the graph nodes, such that
the following equivalence is truee,e, UV, :(e,e,)0E, <« (M(g),M(e,))UE,.
This means a unique mapping between the correspgretiges of the two graphs is
required. For weighted graphs, the condition carextended to include the weights as
well. Subgraph isomorphism requires the mappin$yl to be onlyinjective Graph
monomorphism is a weaker type of subgraph isomorphism. Thewvadgmce relation
must be just an implication e,e, OV, :(e,e,)JE, = (M(e),M(e,))LE,).
Considering the above definitions and that the grepphs A andN) are an Application
Characterization Graph (APCG) and, respectivelio& topology graph, the Network-
on-Chip application mapping problem can be viewed graph monomorphism problem.
Indeed, it is mentioned in [77] that the quadrassignment problem can be formulated
as a graph monomorphism problem. Currently, therena known polynomial-time
algorithm for the monomorphism problem [78]. Howespecial graph types, like planar
graphs, can theoretically be solved in a linearetifi9]. Using the Boyer-Myrvold
algorithm [80], we tested for planarity all the ABE used in this work. All of them
proved to be planar graphs. We also integratedniMdp the VF2 [81] graph matching
algorithm and used it to determine if an isomorphexists between any APCG and its
corresponding NoC topology graph. We found none thig is understandable because
we should search for monomorphisms, not for isommsms. We found little NoC
research using this idea. Graph isomorphism is usf&P] to identify the isomorphically
unique NoC topology graphs. VF2 algorithm is usaed[83] to perform subgraph
isomorphism in order to decompose an APCG intotaok@redefined communication
pattern graphs. We believe approaching the NoGaegijgn mapping problem as a graph
monomorphism problem is worth researching.
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