

Universitatea
Lucian Blaga

Sibiu

Investeşte în oameni!

PROIECT FINANŢAT DIN FONDUL SOCIAL EUROPEAN

ID proiect: 7706

Titlul proiectului: „Creşterea rolului studiilor doctorale şi a competitivităţii doctoranzilor într-o Europă unită”

Universitatea”Lucian Blaga” din Sibiu

 B-dul Victoriei, nr. 10. Sibiu

 Facultatea de Inginerie “Hermann Oberth”

 Domeniul de doctorat Calculatoare şi Tehnologia Informaţiei

Optimized Algorithms for
Network-on-Chip Application Mapping

PhD Thesis
Abstract

Author:
Ciprian RADU, MSc

PhD Supervisor:
Professor Lucian N. Vinţan, PhD

SIBIU, September 2011

Universitatea
Lucian Blaga

Sibiu

Investeşte în oameni!

PROIECT FINANŢAT DIN FONDUL SOCIAL EUROPEAN

ID proiect: 7706

Titlul proiectului: „Creşterea rolului studiilor doctorale şi a competitivităţii doctoranzilor într-o Europă unită”

Universitatea”Lucian Blaga” din Sibiu

 B-dul Victoriei, nr. 10. Sibiu

 Facultatea de Inginerie “Hermann Oberth”

 Domeniul de doctorat Calculatoare şi Tehnologia Informaţiei

Algoritmi optimizați pentru maparea
aplicațiilor pe arhitecturi de tipul

Network-on-Chip

Teză de doctorat
Rezumat

Autor:
Ing. Ciprian RADU

Conducător ştiinţific:
Prof. univ. dr. ing. Lucian N. Vinţan

SIBIU, Septembrie 2011

Dedicată fratelui meu... Dedicated to my brother...

http://alexraduland.wordpress.com/

i

Mul ţumiri

Munca prezentată în această teză de doctorat a fost efectuată în Centrul de Cercetare
pentru Arhitecturi Avansate de Procesare a Informației (Advanced Computer
Architecture and Processing Systems – ACAPS – http://acaps.ulbsibiu.ro) al Universităţii
“Lucian Blaga” din Sibiu, România, în perioada 2008 – 2011.

Mulţumesc coordonatorului meu ştiinţific, domnul profesor Lucian Vinţan, pentru
încurajarea şi ghidarea mea către cariera doctorală. Coordonarea ştiinţifică, sfaturile,
corectările riguroase, comentariile constructive şi suportul său necondiţionat au fost
esenţiale pentru succesul meu, încă din perioada când eram doar student.

Mulţumiri, de asemenea, domnului profesor Theo Ungerer de la Universitatea din
Augsburg din Germania pentru că mi-a permis să fac parte din echipa sa de cercetare
timp de cinci luni, ca stagiu de pregătire în străinătate a doctoratului meu. Perioada din
Augsburg a fost plină de inspiraţie. Am câştigat multă experienţă şi am obţinut sfaturi
folositoare.

În timpul doctoratului am avut plăcerea să lucrez cu prietenul şi colegul meu, Horia
Calborean. Aş dori să îi mulţumesc pentru buna colaborare şi pentru observaţiile sale
valoroase.

Aş dori să mulţumesc, de asemenea, tuturor membrilor Catedrei de Calculatoare, în
special domnului conferenţiar univ. dr. ing. Remus Brad, domnului conferenţiar univ. dr.
ing. Adrian Florea şi domnului asistent univ. dr. ing. Árpád Gellért. A fost o plăcere să
lucrăm împreună.

Le sunt profund recunoscător şi domnului profesor Nicolae Ţăpuş şi echipei de cercetare
de la Universitatea Politehnica din Bucureşti, România. Aş dori să mulţumesc în special
domnului conferenţiar univ. dr. ing. Emil Slusanschi şi domnului asistent univ. Alexandru
Herişanu pentru ajutorul oferit în exploatarea sistemului nostru HPC şi pentru că mi-au
permis şi m-au ajutat să obţin o parte din rezultatele experimentale pe supercalculatorul
de la universitatea dumnealor.

În plus, mulţumesc celorlalţi co-autori şi colegi, Shahriar Mahbub (masterat) şi Andreea
Gancea (licenţă), cu care de asemenea am lucrat.

Vreau să îmi exprim sincera şi profunda recunoştinţă familiei mele şi Nicoletei, pentru
sprijinul şi înţelegerea oferite.

Această lucrare a fost susţinută de contractul financiar POSDRU 7706: Creşterea rolului studiilor
doctorale şi a competitivităţii doctoranzilor într-o Europă unită cofinanţat din Fondul Social European
prin Programul Operaţional Sectorial Dezvoltarea Resurselor Umane 2007 - 2013.

Sibiu, Septembrie 2011
Ciprian Radu

http://webspace.ulbsibiu.ro/ciprian.radu/

ii

Rezumat

În zilele noastre, tendinţele tehnologice au determinat arhitecturile de calculatoare să
ajungă la aşa-numitul power wall. Datorită continuei micşorări a tranzistorilor, densitatea
de putere pe centimetru pătrat a ajuns la limita superioară. Din această cauză, arhitecţii de
calculatoare au hotărât să înceteze îmbunătăţirea performanţei design-urilor acestora prin
intermediul scalării frecvenţei. În loc de aceasta, mai multe procesoare sunt plasate pe
acelaşi chip. Sistemele multicore şi manycore oferă o performanţă crescută faţă de
arhitecturile cu un singur core (nucleu de procesare), prin efectuarea de procesare
paralelă. De asemenea, arhitecturile de calculator specifice pentru aplicaţii îmbunătăţesc
performanţa prin utilizarea de procesoare eterogene în locul celor omogene. Evident,
astfel de arhitecturi trebuie să fie interconectate pentru a comunica. Potrivit viziunii
HiPEAC [1], în momentul de faţă comunicarea defineşte performanţa. Reţelele de
interconectare au o foarte mare importanţă. Cele bazate pe magistrală de transmisie (bus)
nu sunt potrivite pentru sistemele multicore şi manycore pentru că ele nu scalează [2].

După anul 2000, reţele interconectate pe chip, numite arhitecturi Network-on-
Chip (NoC), au fost propuse drept o alternativă fezabilă pentru reţelele bus. Reţelele NoC
au avantaje importante cum ar fi modularitatea şi scalabilitatea, dar sunt și extrem de
limitate în resurse. Ca urmare, există multe probleme de cercetare în domeniul NoC [3].

Maparea aplicaţiilor pe arhitecturi de tipul Network-on-Chip este una dintre cele
mai oneroase probleme (NP completă), în această zonă de cercetare. De vreme ce o
abordare exhaustivă este nefezabilă, pentru această problemă sunt folosiţi algoritmi
euristici. Scopul acestei teze este să evalueze şi să optimizeze algoritmi (mono-obiectiv şi
multi-obiectiv) pentru maparea aplicaţiilor pe arhitecturi de tipul Network-on-Chip.

Primul obiectiv al acestei teze este să se prezinte stadiul actual al algoritmilor
proiectați pentru problema mapării aplicaţiilor pe arhitecturi Network-on-Chip. Apoi,
propunem de asemenea o taxonomie pentru aceşti algoritmi.

Zona de cercetare a arhitecturilor Network-on-Chip este relativ nouă. Ca atare,
unelte puternice şi mature sunt încă aşteptate. Din câte ştim, la această dată nu există un
cadru unitar open source (gratuit) pentru evaluarea şi optimizarea algoritmilor pentru
maparea aplicaţiilor pe arhitecturi de tipul Network-on-Chip. Cel de al doilea obiectiv al
nostru este să proiectăm un cadru comun pentru evaluarea şi optimizarea algoritmilor
pentru diferite mapări pe arhitecturi multiple de tipul Network-on-Chip.

Al treilea obiectiv este să optimizăm şi să adaptăm un algoritm de tipul Simulated
Annealing pentru maparea aplicaţiilor pe NoCuri, folosind cunoștințe de domeniu.
 Al patrulea obiectiv constă în evaluarea şi optimizarea (folosind cunoștințe de
domeniu) algoritmilor evolutivi pentru maparea multi-obiectiv a aplicaţiilor pe NoCuri.
 În cele din urmă, ne propunem să efectuăm o explorare automată, ghidată de
aplicație, a spațiului arhitectural pentru Sisteme on Chip. Aceasta implică sisteme
specifice aplicaţiilor, cu procesoare eterogene, utilizând o reţea NoC parametrizabilă.
 Această teză aduce contribuţii originale în optimizarea sistemelor de tipul
Network-on-Chip. Contribuim cu unelte pentru simulare şi benchmarking. Optimizăm
algoritmi pentru problema mapării aplicaţiilor pe arhitecturi NoC. De asemenea,
propunem o metodă de explorare automată, ghidată de aplicație, a spațiului arhitectural
pentru Sisteme on Chip.

“Lucian Blaga” University of Sibiu
“Hermann Oberth” Engineering Faculty

Computer Engineering Department

Optimized Algorithms for
Network-on-Chip Application

Mapping

PhD Thesis

Abstract

Author:
Ciprian RADU, MSc

PhD Supervisor:
Professor Lucian N. Vinţan, PhD

SIBIU, September 2011

iv

Acknowledgments

The work presented in this PhD Thesis has been carried out in the Advanced Computer
Architecture and Processing Systems (ACAPS) research lab (http://acaps.ulbsibiu.ro) at
“Lucian Blaga” University of Sibiu, Romania, during the years 2008 – 2011.

I thank my PhD supervisor, Professor Lucian Vințan, for encouraging and guiding me
towards the Doctoral degree. His scientific coordination, his advices, his thorough
reviews, his constructive comments and his generous support were essential for my
success, starting from the period when I was just an undergraduate student.

Grateful acknowledgements go also to Professor Theo Ungerer from University of
Augsburg, Germany, for kindly allowing me to be part of his research team for five
months, as my PhD external research stage. My research stage in Augsburg was
inspiring. I gained a lot of experience and obtained good pieces of advice.

During my PhD work, I had the pleasure to work with my friend and colleague, Horia
Calborean. I would like to thank him for the good collaboration we had and for his
valuable observations.

I would also like to thank to all the members from the Computer Engineering
Department, especially to Associate Professor Dr. Ing. Remus Brad, Associate Professor
Dr. Ing. Adrian Florea and to Assistant Professor Dr. Ing. Árpád Gellért. It has been my
pleasure working with them.

My deep gratitude goes as well to Professor Nicolae Țăpuș and to his research staff from
Politehnica University of Bucharest, Romania. I would like to thank especially to
Associate Professor Dr. Ing. Emil Slusanschi and to Assistant Professor Alexandru
Herișanu for helping me with our HPC system and for allowing and helping me do part
of my experimental results on their university supercomputer.

In addition, I thank to all the other co-authors and colleagues, Shahriar Mahbub, MSc
and Andreea Gancea, BSc, with whom I have also worked.

I want to express my sincere and deep gratitude to my family and to Nicoleta, for their
support and understanding.

This work was supported by POSDRU financing contract POSDRU 7706.

Sibiu, September 2011
Ciprian Radu

http://webspace.ulbsibiu.ro/ciprian.radu/

v

Author’s Papers

Ciprian Radu, Lucian Vinţan, Domain-Knowledge Optimized Simulated Annealing for Network-
on-Chip Application Mapping, Submitted to an Elsevier journal, September 2011.

Ciprian Radu, Shahriar Mahbub, Lucian Vinţan, Developing Domain-Knowledge Evolutionary
Algorithms for Network-on-Chip Application Mapping, in review (since July 25th, 2011) at
Journal of Systems Architecture (Impact Factor: 0.667; 5-Year Impact Factor: 0.768),
July 2011.

Ciprian Radu, Lucian Vinţan, UNIMAP: UNIFIED FRAMEWORK FOR NETWORK-ON-CHIP
APPLICATION MAPPING RESEARCH, Acta Universitatis Cibiniensis – Technical Series,
"Lucian Blaga" University of Sibiu, Romania, ISSN 1583-7149, May 2011, Sibiu, Romania.

Ciprian Radu, Lucian Vinţan, Optimized Simulated Annealing for Network-on-Chip Application
Mapping, Proceedings of the 18th International Conference on Control Systems and Computer
Science (CSCS-18), Politehnica Press, pp. 452-459, ISSN 2066-4451, 24 - 27 May 2011,
Bucharest, Romania.

Ciprian Radu, Lucian Vinţan, Towards a Unified Framework for the Evaluation and
Optimization of NoC Application Mapping Algorithms, Sixth International Summer School on
Advanced Computer Architecture and Compilation for Embedded Systems (ACACES),
Academic Press, Ghent, Belgium, pp. 163-166, ISBN 978-90-382-1631-7, July 14, 2010,
Terrassa (Barcelona), Spain.

Ciprian Radu and Lucian Vinţan, Optimizing application mapping algorithms for NoCs through
a unified framework, In Proceedings of the 9-th IEEE RoEduNet International Conference, Sibiu,
Romania, pp. 259 - 264, ISBN 978-1-4244-7335-9, 24-26 June 2010. IEEE Computer Society.
Indexed IEEE, ISI , Scopus

Ciprian Radu, Horia Calborean, Adrian Florea, Arpad Gellert, Lucian Vinţan, Exploring some
multicore research opportunities. A first attempt, Fifth International Summer School on
Advanced Computer Architecture and Compilation for Embedded Systems (ACACES),
Academic Press, Ghent, Belgium, pp. 151-154, ISBN 978-90-382-1467-2, July 2009, Terrassa
(Barcelona), Spain.

Adrian Florea, Ciprian Radu , Horia Calborean, Adrian Crapciu, Arpad Gellert, Lucian Vinţan,
Understanding and Predicting Unbiased Branches in General-Purpose Applications, Buletinul
Institutului Politehnic Iasi, Tome LIII (LVII), fasc. 1-4, Section IV, Automation Control and
Computer Science Section, pp. 97-112, ISSN 1220-2169, "Gh. Asachi" Technical University,
2007, Iaşi, Romania. Indexed Zentralblatt MATH

Adrian Florea, Ciprian Radu , Horia Calborean, Adrian Crapciu, Arpad Gellert, Lucian Vinţan,
Designing an Advanced Simulator for Unbiased Branches’ Prediction, Proceedings of 9th
International Symposium on Automatic Control and Computer Science, ISSN 1843-665X,
November 2007, Iaşi, Romania.

Ciprian Radu, Horia Calborean, Adrian Crapciu, Arpad Gellert, Adrian Florea, An Interactive
Graphical Trace-Driven Simulator for Teaching Branch Prediction in Computer Architecture,
The 6th EUROSIM Congress on Modelling and Simulation, (EUROSIM 2007), ISBN 978-3-
901608-32-2, 9-13 September 2007, Ljubljana, Slovenia (special session: Education in
Simulation / Simulation in Education I).

Contents

1 INTRODUCTION... 1

2 NETWORK-ON-CHIP ARCHITECTURES... 2

3 NETWORK-ON-CHIP APPLICATION MAPPING................ .. 5

3.1 THE NETWORK-ON-CHIP APPLICATION MAPPING PROBLEM.. 5
3.1.1 Application Mapping and Routing Problems ... 8
3.1.2 Application Mapping and Scheduling Problems .. 9

3.2 TAXONOMY FOR THE APPLICATION MAPPING ALGORITHMS.. 10

4 DESIGNING A UNIFIED FRAMEWORK FOR THE EVALUATION AN D OPTIMIZATION
OF NOC APPLICATION MAPPING ALGORITHMS.............. ... 13

4.1 THE UNIFIED FRAMEWORK DESIGN... 13
4.2 THE DEVELOPED NETWORK-ON-CHIP SIMULATOR .. 15

4.2.1 Experimental Results .. 15

5 BENCHMARKS ... 18

6 OPTIMIZED SIMULATED ANNEALING FOR NETWORK-ON-CHIP A PPLICATION
MAPPING. A DOMAIN-KNOWLEDGE APPROACH 19

6.1 THE ALGORITHM.. 19
6.2 EXPERIMENTAL RESULTS... 22

7 DESIGNING DOMAIN-KNOWLEDGE EVOLUTIONARY ALGORITHMS FOR
NETWORK-ON-CHIP APPLICATION MAPPING 30

7.1 ENERGY- AND PERFORMANCE-AWARE GENETIC ALGORITHM...30
7.2 ELITIST EVOLUTIONARY STRATEGY .. 30
7.3 DEVELOPING PROBLEM KNOWLEDGE CROSSOVERS.. 31

7.3.1 NoC Position Based Crossover (NPB) ... 31
7.3.2 Mapping Similarity Crossover (MS)... 31

7.4 MUTATION OPERATORS... 31
7.5 MULTI-OBJECTIVE OPTIMIZATION .. 32
7.6 EXPERIMENTAL RESULTS... 32

8 APPLICATION DRIVEN AUTOMATIC DESIGN SPACE EXPLORATI ON FOR SYSTEM-
ON-CHIP ARCHITECTURES... 40

8.1 FRAMEWORK FOR AUTOMATIC DESIGN SPACE EXPLORATION...40
8.2 DESIGN SPACE EXPLORATION WORKFLOW.. 40
8.3 EXPERIMENTAL RESULTS... 42

9 CONCLUSIONS AND FURTHER WORK ... 50

10 SELECTED REFERENCES ... 54

1

1 Introduction

In the current days, the technology trends determined computer architectures to reach the
so called power wall. Due to continuously shrinking transistors, the power density per
square centimeter reached the upper limit. Because of this, computer architects decided to
stop improving the performance of their designs by means of frequency scaling. Rather
than this, more processors are placed on the same chip. Multicore and manycore systems
provide better performance than single core architectures, by performing parallel
processing. Also, application specific computer architectures yield increased performance
by employing heterogeneous processors instead of homogenous processors. Obviously,
such architectures must be interconnected in order to communicate. According to
HiPEAC’s vision [1], nowadays communication defines performance. Interconnection
networks are of high importance. Traditional bus-based networks are not suitable for
multicores and manycores, because they do not scale [2].
 After year 2000 on chip interconnection networks, called Network-on-Chip (NoC)
architectures have been proposed as a feasible alternative to bus networks. NoCs have
important advantages like modularity and scalability but, they are also extremely resource
limited. As such, there are many outstanding research problems in the NoC field [3].
 Network-on-Chip application mapping is one of the most onerous, NP-hard,
problems in this area of research. Since an exhaustive approach is infeasible, heuristic
algorithms are used to address this problem. The scope of this thesis is to evaluate and
optimize Network-on-Chip application mapping algorithms (using single-objective and
multi-objective approaches).
 The first objective of this thesis is to realize a state of the art regarding the
algorithms designed for the Network-on-Chip application mapping problem. Then we
also propose a taxonomy for these algorithms.
 The Network-on-Chip research field is relatively new. Therefore powerful and
mature tools are still expected. To the best of our knowledge, there is not currently an
open source unified framework for the evaluation and optimization of Network-on-Chip
application mapping algorithms. Therefore, our second objective is to design a
framework that uses a common frame for evaluating and optimizing different state of the
art mapping algorithms on multiple NoC architectures.
 The third objective of this work is to adapt and optimize a general Simulated
Annealing technique, for NoC application mapping, using domain-knowledge.
 Our forth objective is to evaluate and optimize (using domain-knowledge)
evolutionary algorithms, for Network-on-Chip application mapping, through a multi-
objective approach.
 Finally, we aim to perform an application driven automatic design space
exploration of System-on-Chip designs. This involves entire application specific systems,
with heterogeneous processors, using a NoC as interconnection.
 This thesis brings original contributions in the Network-on-Chip research field.
We contribute with tools for simulating and benchmarking NoC designs. We optimize
algorithms for the NoC application mapping problem. We also propose an application
driven automatic design space exploration method for System-on-Chip architectures.

2

2 Network-on-Chip Architectures

Since the invention of the integrated circuit in 1958, Moore’s law [4] describes a trend in
Computer Engineering that is still nowadays. For more than half a century, the number of
transistors that can be placed onto a single chip doubles approximately every two years
(initially it was one year, than Moore readapted its law) [5]. In the early beginnings, a
computer system occupied an entire room. As technology evolved, in the 70s the Large
Scale Integration (LSI) era began and the computers were rack-level systems. In the 80s,
Very Large Scale Integration (VLSI) era began. This meant a system can be placed on a
single board. Ten years later, in the 90s, we went to chip-level systems (ULSI – Ultra
Large Scale Integration). Nowadays, billion transistors can be integrated on a single die.
A chip is an entire system and so, the term System-on-Chip (SoC) was coined. Systems-
on-Chip make use of parallel processing at all levels: Instruction Level Parallelism (ILP),
Memory Level Parallelism (MLP) and Thread Level Parallelism (TLP) [6], [7], [8], [9].
We researched these levels of parallelism previously by focusing on branch prediction
[10], [11], [12] and multicore architectures [13], [14]. SoCs are feasible for a wide range
of applications. However, they determine the architects to focus on the complex aspects
of the communication architecture.

The continuously growing number of transistors per chip leads to a bigger and
bigger gap between logic gate delays and wire delays [15]. As compared with the gate
delays, the global interconnection wires used by a typical bus interconnection network
determine significantly higher delays.

Systems-on-Chip also incur problems related to complexity, design flexibility and
productivity and system synchronization. Achieving global synchronization is getting
harder and harder as technology advances and chip speed increases.
Currently, computer architects face with the difficult problem called Power Wall. The
Power Wall is what determined the appearance of multicore and manycore architectures
[16]. Parallel programming is needed to exploit multicores. Obviously, such architectures
require scalable interconnection networks. It is well-known that the bus is not a scalable
interconnection network [2].
 The gap between on-chip and off-chip communication is increasing. On-chip, we
have greater bandwidth and shorter latencies but, the power budget is smaller. Besides
scalability, on-chip communication also means flexibility, simplicity and efficiency.
Flexibility is achieved by no longer using application-specific wiring (like buses do).
Simplicity refers to modular, structured and regular design. Efficiency means the
interconnection’s ability to share global wires between different communication flows.
Communication is a performance bottleneck. Because of this, the design shifts from a
processing-centric to a communication-centric approach.

Simply stated, a Network-on-Chip (NoC) is a communication network that is
used on a single chip. A Network-on-Chip consists of a number of interconnected
heterogeneous devices (e.g. general or special purpose processors, embedded memories,
application specific components, mixed-signal I/O cores) where communication is
achieved by sending packets over a scalable interconnection network. No global
wiring is used by a NoC. Wiring resources are shared by the communicating devices. The

Network-on-Chip Architectures

3

idea appeared in the 90s but it started to be researched only from year 2000. Some of the
first papers introducing the NoC concept are [17], [18], [19], [20], [21], [22] and [23].

The Network-on-Chip research field is relatively new and of high importance. In
HiPEAC’s vision [24], nowadays communication defines performance. Communication
is essential at three levels: (1) between a processor and its memory, (2) between a
multicore’s different processors and (3) between processing systems and input/output
devices. At the processor – memory level, the impact of communication on performance
is basically controlled through cache hierarchies. At the other two levels, it is the role of
the interconnection network to deal with the communication cost so that performance is
less affected. More precisely, more and more processors are integrated on the same chip.
Since power defines performance, multicores are now the solution for achieving higher
performance. In this context, traditional buses, which allow the processors to
communicate, no longer suffice. Networks-on-Chip provide the scalability that buses
lack. Therefore, NoCs will have an increasing importance in the following years. The
growing interest in this area of research is stressed out in HiPEAC’s vision [24]:
interconnects is one of the clusters on which HiPEAC’s roadmap is built.

A component-based hardware design methodology is envisioned in the future
[24]. This means that systems will be built from standard reusable components like
memories, cores and interconnection networks. This design technique applies however at
multiple levels. The level of abstraction increases progressively. Basic blocks (gates,
registers, ALUs etc.) make components (processors, NoCs etc.). Components are then
used to create different kinds of chips (CPUs, GPUs and so on), which in turn are used to
obtain systems that also are interconnected, leading to systems of systems.

Obviously, the importance of interconnection networks increases as the number of
communicating components raises. For intra-chip communication, the NoC is the
solution and this is due to at least one factor: scalability. As the number of cores
increases, the impact of memory bandwidth and memory latency becomes more and more
stringent. Networks-on-Chip help at controlling the problems of memory bandwidth and
latency. However, NoCs have a lot of issues that need solving. For example, they still
require a lot of power and occupy large areas of the chip.
 More precisely, research in the field of interconnection networks is required by all
of HiPEAC’s current research objectives: Design Space Exploration (DSE), concurrent
programming models and auto-parallelization, design of optimized components, self-
adaptive systems and virtualization.
 Performing Design Space Exploration (DSE) for entire systems is currently a
challenge. Unified DSE frameworks, that include the interconnection networks, are
estimated to be available only between years 2016 and 2020 [24]. HiPEAC Consortium
also estimates that the design space of interconnects will be feasible for exploration only
around the year 2015. Only then, network traffic models, benchmarks and realistic
performance/power models will be available for on-chip interconnection networks.
 Developing concurrent programming models requires network interface
mechanisms which efficiently support the cache coherence protocols and the
communication between processors.

Electronic Design Automation (EDA) refers to a set of methods and tools that help
at improving the system’s design efficiency. EDA includes (among others)
hardware/software modeling and partitioning and mapping applications to Multi-

Network-on-Chip Architectures

4

Processor System-on-Chip (MPSoC) architectures (related to this is the mapping problem
for Network-on-Chip architectures). EDA has several challenges related to
interconnection networks:

- full system simulation, including the interconnections;
- designing application-specific networks;
- designing reusable interconnection modules through interface standards.
Creating interconnection network architectures which reduce power, latency and

integration area is a challenge of designing optimized components. The interconnection
network may also be optimized by using dynamic power management techniques.
Another goal is to design on-chip memory hierarchies.

A challenge of self-adapting systems is to design fault tolerant network
architectures and protocols. The network traffic may also be monitored and controlled.
Such data may be used by the run time system for self-adaptation.

Network interconnection is important for virtualization as well, from the point of
view of system security and quality of service. The network may be physically or
logically partitioned. A research challenge is to identify how network topologies and
routing algorithms can help at system partitioning and isolation.

5

3 Network-on-Chip Application Mapping

The Network-on-Chip research field deals with fifteen major problems [3]. We will focus
next only on one of them, namely Network-on-Chip application mapping.
 We begin by defining the Network-on-Chip application problem and by showing
that it is an NP-hard problem. Then we show this problem is directly connected to other
two NoC research problems: scheduling and routing.
 We then propose a taxonomy for Network-on-Chip application mapping
algorithms and we describe some of the state of the art algorithms for NoC mapping.

3.1 The Network-on-Chip Application Mapping Problem
The design flow of a Network-on-Chip architecture for a specific application implies the
following three major steps [25]:

1. dividing the application into a graph of concurrent tasks (threads);
2. assigning and scheduling the application tasks to the available IP cores;
3. mapping each IP to a NoC tile, so that the metrics of interest are optimized.

The Network-on-Chip application mapping problem was formulated in [25] as the

topological placement of the IPs onto the on-chip tiles. It is an instance of the quadratic
assignment problem, which is proven to be an NP-hard problem [26]. The search space
increases factorially with the system size. For example, a NoC with 8x8 tiles theoretically
allows 64! mappings. Theoretically, mapping N IP cores onto M network nodes (MN ≤)

implies
)!(

!

NM

M

−
possible core arrangements on the NoC nodes. When the number of IP

cores is identical to the number of network nodes (MN =), the number of possible
mappings becomes!M . This is therefore a permutation, combinatorial, problem. It
directly affects NoC’s performance in terms of latency, throughput, power consumption,
energy etc. This is because typical network metrics like latency and power are directly
proportional to distance.

A typical mapping cost function [27] is:

∑∑
≤≤

>−
∈

⋅==∈
Nji

ji
Ll

l jiDistbwBWPCost
,1

)],([)(π , where π is a particular mapping

from P, the set of all possible mappings. L is the set of NoC links which are used by the
application. BWl is the bandwidth delivered over link l. Dist (i , j) is the distance between
nodes i and j (hop count) and bwi->j is the bandwidth required by node i for
communicating its data to node j.
Consider for example the following two mappings π1 and π2. They consist of six
processing elements placed onto a 2D mesh NoC. PE2 communicates 30 bits/s to PE6
and PE4 100 bits/s to PE3. We are interested to evaluate the two mappings using the
above cost function.

Network-on-Chip Application Mapping

6

Fig. 1 Example of two mappings π1 and π2

For the first mapping, we have:

3603100230)(

)(100)(30)(

)()()()()(

1

34621

343462621

=⋅+⋅=
→⋅+→⋅=

→⋅→+→⋅→=

π
π
π

Cost

PEPEDistPEPEDistCost

PEPEDistPEPEbwPEPEDistPEPEbwCost

Similarly, for the second mapping we get: 2602100230)(2 =⋅+⋅=πCost . Notice that the
only difference between the two mappings is the placement of PE4 and PE5. In the
second mapping, PE4 is closer to PE3. Because of this, given the above conditions,
mapping π2 is better than mapping π1.

In the field of embedded systems, an application is typically described through a
Communication Task Graph (CTG). A CTG is defined in [28] as a directed acyclic
graph,),('' DTGG = , where each vertex, Tt i ∈ , is a an application task (a computational

module in the application). A task typically has assigned to it information like: execution
time on every type of Processing Element (PE) available for the NoC, energy
consumption (when assigned to a certain PE), task deadline (the time until the task
associated with the CTG node must complete its execution [29]), etc. A directed arc
between it and jt , is noted as Dd ji ∈, and has a value associated to it, which represents

the communication volume ()(, jidv , usually expressed in bits) exchanged between tasks

it and jt . Each arc shows both data and control dependencies. A data dependency marks

that there is a communication between the two tasks (it and jt) [30]. A control

dependency indicates that a task cannot be executed before its predecessor tasks are not
completely executed [30]. Thus, a data dependency is basically an undirected arc between
two tasks. When such an arc is present between two tasks, it means that the two tasks are
communicating. When the arc is directed, the arc’s arrow shows a control dependency
between the two tasks.

Note that a CTG is defined as an acyclic directed graph. However, in reality, the
tasks of an application may exhibit a communication pattern which creates loops. Loops
are not usually modeled with a CTG because of real-time considerations. For hard real-
time applications, unbounded loops are avoided because they do not allow bounds on
graph execution times. It is not possible to guarantee that the worst-case communication
volume path can be executed under the specified deadline. It is preferred that deadlines
can be assigned to tasks and a CTG typically has a period attached to it. The CTG can
therefore be reiterated after a certain amount of time [31].

The Directed Acyclic Graph (DAG) model of a parallel program is used in [32] to
address the scheduling problem. In our humble opinion, the Network-on-Chip research

Network-on-Chip Application Mapping

7

community adopted the DAG model, from the scheduling research area, with the name of
Communication Task Graph.

A task is defined in [32] as a set of instructions that are executed sequentially, on
the same processor, without preemption. The task is a node in the DAG. It may have a
weight attached to it, which represents the computational cost. However, a CTG does not
weight the nodes because it is only communication oriented.

The DAG arcs model the communication messages and the precedence
constraints between tasks. The arcs are weighted with communication costs. If two
communicating tasks are assigned to the same processor, their communication cost will
be neglected. The precedence constraints are what make the graph to be directed. They
show how communication flows among tasks. A node is not allowed to start its execution
until it receives all the messages from its parent nodes.

Program loops cannot be explicitly represented using the DAG model.
Conditional branches are not included as well. According to [32], including loops and
branches in the DAG model is an implicitly difficult problem. Additionally, many
numerical applications (e.g.: Fast Fourier Transform) contain loops with a number of
iterations known at compile time. For such programs, techniques like loop unrolling [6]
can be applied. This way, one or more loop iterations can form a task. Also, large classes
of numerical applications and data-flow programs have very few conditional branches.

Scheduling a DAG with probabilistic branches and loops was addressed in [33].
Each graph arc has a probability that the child node will be executed immediately after
the parent node. Scheduling DAGs with conditional branches is made in [34] by using,
beside the precedence graph, a branch graph, too. Although DAG models that deal with
loops and/or conditional branches have been proposed, the Network-on-Chip research
community adopted the simple DAG model, without loops and conditional branches.
Therefore, a CTG does not model program loops nor branches. It focuses on the
communications among the tasks of data-flow programs.

The acyclic property of a Communication Task Graph is dropped at a coarser
level, denoted by an Application Characterization Graph (APCG). An APCG models
an application at the level of Intellectual Property (IP) cores and it is defined in [28] as: a
directed graph,),(ACGG = , where each vertex Cci ∈ represents an IP core and each

directed arc, Aa ji ∈, , characterizes the communication between coresic and jc . This

may be application specific information like communication volume. It can also be
design constraints, like communication bandwidth, area of IP cores, etc. As in the case of
a CTG, a directed arc of an APCG shows data and control dependencies. But, compared
to a CTG, an APCG allows cycles. For example, we can have a bidirectional
communication between two cores. Note that loops are still not desired in APCGs
because of real-time constraints. It is often preferred to transform a directed graph into a
Directed Acyclic Graph (DAG) [35]. This allows worst-case execution time analysis,
which makes the APCG usable in hard real-time systems as well.

An Application Characterization Graph is obtained from a Communication Task
Graph by scheduling the tasks on available IP cores.

Having the definitions for a CTG and an APCG, we can now illustrate the
application mapping problem for NoCs using the following figure.

Network-on-Chip Application Mapping

8

Fig. 2 The Network-on-Chip application mapping problem

Obviously, the NP-hard problem cannot be solved by means of exhaustive search.
Heuristic algorithms [36] are employed with the purpose of finding the best topological
placement of cores onto network nodes. The objective is to optimize network latency, its
energy consumption, etc. Multiple objectives may be followed at the same time, too.
 We show next that Network-on-Chip application mapping interacts directly with
other two NoC research problems: routing and application scheduling.

3.1.1 Application Mapping and Routing Problems
While a good mapping of cores onto network nodes can lead to energy savings, the routes
used by the cores to communicate can have a great impact on the NoC’s performance.
The best topological placement of cores onto nodes is not enough to account for the
performance of the network. The next figure shows an example where two minimal
routes are available between the top-left and bottom-right tiles of a 2D mesh NoC.
Choosing the proper route can increase the performance of the network.

Network-on-Chip Application Mapping

9

Fig. 3 The application mapping and routing problems

This shows that the application mapping problem is tightly connected to the routing
problem. Usually it is not necessarily to generate routing paths when placing IP cores
onto NoC tiles. A mapping algorithm may simply consider that the NoC architecture is
using a particular routing protocol (like XY routing in [25]). However, routing
information can help at obtaining a better mapping [37].

3.1.2 Application Mapping and Scheduling Problems
Before mapping the IP cores onto the Network-on-Chip tiles, the application’s tasks and
communication transactions must be assigned to the NoC resources. Additionally, the
tasks’ execution order must be established. This is called the scheduling problem for
NoC architectures [38] and is an NP-hard problem as well. It has a considerable influence
on the energy consumed by the IP cores when computing, due to their heterogeneity. For
example, a DSP core may consume less energy than a general purpose processor when
computing a Fast Fourier Transform. Also, the communication energy consumption of
the NoC architecture is affected by the task assignment (because of the routing paths).

Therefore, the application mapping problem is connected to the scheduling and
routing problems. The following figure illustrates this fact.

Network-on-Chip Application Mapping

10

Fig. 4 The scheduling, application mapping and routing problems

An application is described through its Communication Task Graph. A scheduling
algorithm is then used to assign application tasks (threads) to available IP cores and to
specify their order of execution. After the scheduling step, the Application
Characterization Graph is obtained. Then, using a mapping algorithm (which may
generate the routing function as well), the IP cores are topologically placed onto the NoC
tiles.
 We observe that both scheduling and mapping algorithms for Networks-on-Chip
have similar objectives. Increasing the performance and decreasing the energy
consumption of a NoC, for a particular application, are two optimizations typically made
by such algorithms.

Ideally, both scheduling and mapping problems should be treated together. In
other words “scheduling” means mapping the application’s tasks onto the available IP
cores, and “mapping” means mapping the IP cores onto the available NoC nodes.
Therefore, both scheduling and mapping problems deal with application mapping onto a
Network-on-Chip.

Nevertheless, because of the NP-hard complexity of the problem, mapping
applications onto NoCs is divided in a two-step process: scheduling, followed by
mapping.

3.2 Taxonomy for the Application Mapping Algorithms
An application mapping algorithm takes into consideration the characteristics of the
application, and it has the purpose of finding the best placement of IP cores, onto the tiles
of the Network-on-Chip architecture. Obviously, the application mapping algorithm must
be aware of the NoC topology. The placement of the cores onto the network nodes can be
made before the application starts to be executed and it cannot be changed afterwards. We
call this type of mapping a static mapping. Obviously, the mapping process is iterative:
multiple mappings are generated until the optimum mapping is found but, in case of static
mapping, all the mappings are obtained before the application starts running. If the
mapping of cores changes while the application runs, we have a dynamic mapping. This
is typical for NoCs that are fault tolerant or application-adaptive. This kind of mapping
could also lead to an increase of network performance and/or to a decrease in power
consumption but, it is more difficult to implement (than static mapping is).

Network-on-Chip Application Mapping

11

The factorial number of possible mappings can be decreased because it is very
likely that not every mapping is feasible. This is because of the communication demands
of the application and the hardware limitations of the underlying Network-on-Chip
architecture. For example, consider that we have two communicating IP cores which
require a bandwidth of B bytes/s. The NoC architecture may have some links that support
such high bandwidth and other links that do not support it. In such a case, mapping the
two IP cores so that they would require communicating over links that do not support the
required bandwidth would generate an impractical mapping. The bandwidth requirement
is an example of a mapping constraint. We define the mapping constraint (MC) as a
restriction, derived from the requirements of the application and the characteristics of the
Network-on-Chip architecture, imposed when associating IP cores to network nodes. Any
mapping constraint may limit the size of the search space. An application mapping
algorithm may or may not use one or more mapping constraints but, usually this should
be an obvious thing to do because it would speed up the mapping algorithm. The
difficulty of using a mapping constraint consists of having the means to evaluate if a
mapping satisfies or not that constraint.

The application mapping algorithm explores the search tree of possible mappings
and tries to find the best mapping (for a certain application and NoC architecture). In
order to determine the best mapping, at least one optimization goal is required. Example
of optimization goals can be: network performance, communication energy, power
consumption, etc. Thus, a mapping algorithm may search for the best mappings by
considering a single objective or even multiple objectives.

As we showed in Section 3.1.1, the mapping problem is also closely related to the
routing problem. Any routing algorithm may be applied after the mapping has been done.
However, if the mapping algorithm is not routing aware, it is possible that the best
mapping does not actually provide the best network performance due to the fact that the
routing paths were not considered when applying the optimization goals to the possible
mappings. A mapping algorithm can thus, deal with identifying the routing paths for the
mapped IP cores as well. The routing function can be deterministic or adaptive. Also, it
should provide freedom from deadlock and livelock, and it may have other characteristics
like being minimal.
 To summarize, we have established that we have two types of application
mapping algorithms: static and dynamic. Any mapping algorithm, whether static or
dynamic has at least one optimization goal (single-objective or multi-objective). It may
use (one or more) mapping constraints. Also, it may determine the routing function,
during mapping. The routing can be deterministic or adaptive and it can have other
properties like freedom form deadlock and others. We have thus four classification
criteria:

static single objective mapping type
dynamic

optimization
goals multiple objective

with one or more
mapping constraints

generates routes
while mapping mapping

constraints without any mapping
constraint

routing
awareness does not generate

routes

Network-on-Chip Application Mapping

12

An application mapping algorithm can be static or dynamic. Either static or dynamic, the
mapping algorithm can have a single objective (SO) or multiple objectives (MO) to
optimize. Characteristics like using mapping constraints and being routing aware (RA)
are optional and can be applied to any type of mapping algorithm (making it thus more
specific).
 Finally, we note
that in [39], where the
scheduling problem is also
considered, the algorithms
are classified as integrated
or separated based on
whether they treat NoC
mapping and scheduling
together or not. We
consider this to be good
classification criteria when
including application
scheduling, too. The
algorithms presented in the above cited paper are for NoCs and for bus-based
multiprocessor embedded systems. The NoC algorithms are classified only by whether
they have routing awareness or not. The algorithms for bus-based systems are classified
according to their optimization goal (energy minimization, handling soft real time
constraints or memory awareness). Issues like mapping type and mapping constraints are
also mentioned but they are not used as classification criteria. The single/multi objective
(optimization goals) criterion is not included. Therefore, we consider our proposed
taxonomy to be in accordance with the one from [39] but, more general and suitable.

MAPPING CONSTRAINTS

M
O

S
O

STATIC

DYNAMIC

RA

Fig. 5 Taxonomy for application mapping algorithms

13

4 Designing a Unified Framework for the Evaluation
and Optimization of NoC Application Mapping

Algorithms

The NoC application mapping problem is addressed by the research community through
application mapping (heuristic) algorithms. As we have already shown in Chapter 3, these
algorithms consider the characteristics of both the application and NoC architecture.
However, currently, the existing application mapping algorithms are basically evaluated
only on 2D mesh topologies. But, they can be extended, to work with other network
topologies, too. These algorithms are evaluated only on some specific NoC designs and
also, their performance cannot be directly compared because a common evaluation
methodology is missing.

We propose a unified framework for the evaluation and optimization of Network-
on-Chip application mapping algorithms, called UniMap . Such a framework will allow a
better comparison of their performance. The framework will also be flexible so that many
NoC designs (e.g.: different network topologies) can be used for testing the performance
of the mapping algorithms. An overview of UniMap was published in [40], [41]. Our
framework is an open source project available under GPL v3 license for the research
community [42].

We have successfully used UniMap on our High Performance Computing (HPC)
System [43] from “Lucian Blaga” University of Sibiu, Romania . Our HPC currently
has 30 Intel Xeon E5405 homogenous quad cores (15 blades, 120 cores), operating at a
frequency of 2 GHz. This means a total of 120 Intel cores. This HPC system also
includes 4 IBM Cell Broadband Engine (Cell BE) processors (2 blades, 36 cores). The
IBM Cell is a heterogeneous multicore, consisting of a 64-bit dual thread PowerPC
(master) core plus 8 SIMD processors. These (slave) vectorial processors, called SPU
(Synergistic Processor Unit), are specialized for data intensive processing domains like
cryptography, media and scientific applications. The HPC allocates 4.84 GB of DRAM
memory for each two Intel quad cores and 7.85 GB of DRAM memory for each two IBM
Cell cores. This means a total of 88.3 GB of DRAM memory. The total storage capacity
is approximately 1.2 TB. We also performed simulations with UniMap on the HPC
system from Politehnica University of Bucharest, Romania. UniMap is written in Java
(except the NoC simulator, which is written in C++) which makes it highly portable and
feasible to be further improved with concurrent programming characteristics.

4.1 The Unified Framework Design
UniMap is composed of the following major modules:

- a model for representing real applications;
- a module for assigning the application tasks to IP cores (Scheduller);
- a module that contains application mapping algorithms (Mapper);
- a model for representing different Network-on-Chip architectures;
- a Network-on-Chip simulator.

This design reflects the interaction between the Network-on-Chip application mapping
problem and the other two problems with which it interacts (routing and scheduling – see

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

14

sections 3.1.1 and, respectively, 3.1.2). The modules are as decoupled as possible. This
approach allows UniMap to be flexible, reusable (and modular).
 We use eXtensible Markup Language (XML) schemas to describe real
applications and Network-on-Chip architectures. The Scheduler, Mapper and NoC
simulator modules do not interact directly. They communicate through XML models.
This approach theoretically allows any NoC simulator to be used with UniMap.
Similarly, any scheduling or mapping algorithm can be integrated as easy as possible.

The following figure illustrates these components and presents the design flow of
the unified framework.

IP cores

Scheduller

Configure NoC architecture

Mapper
Application

mapping

algorithms

NoC simulator

Network

traffic

generator

Best

mapping?

NO

YES

Communication Task Graph

(CTG)

T0

T1

T3

T4

T2

CV01 CV02

CV13

CV24

CV34

Application Characterization Graph

T0

T1

T3

T4

T2

CV01 CV02

CV13

CV24

CV34

CPU

DSP1 DSP2

ASIC

NoC implementation

CPU DSP1

DSP2 ASIC

Use

simulator?

Analytical

model

END

YES

NO

Fig. 6 UniMap design flow

An application running on a NoC architecture is described through its Communication
Task Graph (CTG). The CTG presents the application partitioned into tasks (concurrent
threads). It shows the communication pattern of the application: which tasks are
communicating with which tasks and the communication volume of the data exchanged
between tasks (e.g.: CV01 denotes the communication volume from task T0 to task T1).

We propose obtaining CTGs in three distinct ways:
1. randomly, by using the TGFF [31] tool;
2. from realistic embedded applications, using the E3S benchmarks suite [44];
3. from real-world multithreaded applications, using the CETA [35] tool.

The tasks must be first assigned to the IP cores. This can be done using a
scheduling algorithm. For example the EAS algorithm [38] is able to perform scheduling
under real-time restrictions, while trying to optimize the energy consumption of the NoC
architecture.

The IP cores library from E3S was integrated in UniMap. For each IP core,
information like task execution time and power consumption for a given task is known.

The output of the scheduling algorithm is the Application Characterization Graph
(APCG). The APCG is the input for the mapping algorithm.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

15

A main component of the framework will consist in a library containing (state of
the art) application mapping algorithms’ implementations. The performance of every
mapping algorithm can be evaluated on multiple NoC designs, through our developed
simulator.

The NoC simulator is another important part of the unified framework. An
important aspect of the simulator consists in its flexibility. This will impact on the
number of possible ways in which the simulated NoC can be configured. The simulator is
also responsible with determining the network’s performance represented through
multiple objectives (performance, energy consumption, etc.). This allows a thorough
comparison of the mapping algorithms, in a unified manner. For each selected network
design (e.g.: the network topology can be varied), an application mapping algorithm will
provide multiple mappings, until the best mapping is determined. The NoC simulator
includes a network traffic generator which emulates the communicational behavior of the
application (based on CTG and APCG graphs).

4.2 The Developed Network-on-Chip Simulator
ns-3 NoC is a Network-on-Chip simulator that the author of this Thesis started to develop
during his five months of PhD external research stage at Augsburg University
(Germany), Department of Systems and Networking, led by Professor Theo Ungerer. We
decided to develop our own NoC simulator because the current tools for this (new)
research field are still immature. According to HiPEAC’s vision [24], mature NoC
simulators are expected only in 2015.

The simulator is based on the ns-3 simulation framework for Internet systems. It
is a modular, flexible and scalable NoC simulator. It has parameters like: flit size, packet
size, packet injection probability, packet injection rate, buffer size, switching mechanism
(Store and Forward, Virtual Cut Through, Wormhole), routing algorithm (Dimension
Order Routing and other two protocols that account for the network load). It supports k-
ary d-cube topologies (2D mesh, 3D mesh, 2D torus, 3D torus, hypercube etc.). It
contains a network traffic generator based on communication patterns form real
applications. Also, using ORION 2.0 [45], it can estimate power consumption and
integration area. Our ns-3 NoC is an open source project, which we contribute to the
Network-on-Chip research area.

4.2.1 Experimental Results
We present next some preliminary simulation results published in [46], were we
evaluated the potential of the NoC Irvine architecture and were we showed the impact of
the buffers’ size on NoC’s performance. The following results express the network
performance, through the average latency of the packets, as a function of packet injection
probability. The synchronous version of the simulator was used. During the simulation,
the first 1000 cycles were considered warm-up cycles. Packets were injected into the
network for 10000 cycles. Only the packets injected after the warm-up cycles were
collected into the statistics. The Irvine architecture was used, with XY routing, wormhole
switching, input channel buffers of 9 flits in size and packets of 8 flits in length. The
effects of speeding up the data flits, like it is done in [47], are shown it the following
charts.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

16

 Fig. 7 shows how, on a 8x8 Irvine NoC, the average packet latency decreases as
data flits are sent through the network using a clock frequency which is two or four times
higher than the one used for advancing the head flits.

Fig. 7 The average packet latency on a 8x8 Irvine NoC architecture, while the speed with which data

flits advance in the network varies for 4 different communication patterns

With the matrix-transpose traffic pattern and using a 4 times higher clock
frequency for the data flits, the packet’s average latency remains close to the zero-load
latency, as long as the injection probability is lower or equal than 0.9. The Irvine
architecture helps at decreasing the network congestion. This is also visible for the other
three traffic patterns. The network is significantly less congested when data flits are
transmitted faster than head flits. For the bit-complement traffic pattern, the average
packet latency is fairly higher because each node injects packets. This is not true with the
other traffic patterns because they can create traffic from a certain node to exactly the
same node, which is not injected into the network. Therefore, we believe that this
behavior might contribute to the bit-complement’s higher packet latency.

We did similar simulations on a 4x4 Irvine NoC, too. The simulations on an 8x8
Irvine NoC took approximately 10 times more time than the simulations done on the 4x4
network. The longest simulation on a 4x4 network took around 2 minutes and a half (this
is approximately 10 times faster than NoCSim [48]).
 In [49] we showed how the NoC performance varies on topologies like: 2D mesh,
2D torus, 3D mesh, 3D torus and hypercube. For example, the following figure shows the
buffer size influence on the performance of a (2x2x2x2) hypercube. Unless specified
otherwise, the simulator’s parameters have the same values as before.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

17

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1

Packet injection probability

A
v

e
ra

g
e

 p
a

ck
e

t
la

te
n

cy
 [

cy
cl

e
s]

Buffer size = 2

Buffer size = 3

Buffer size = 4

Buffer size = 5

Buffer size = 6

Buffer size = 7

Buffer size = 8

Buffer size = 9

Buffer size = 10

Fig. 8 The average packet latency on a hypercube NoC architecture, while the size of the input

buffers varies uniformly

The Network-on-Chip’s performance improves as the buffer size increases.
 We show next how the NoC’s average packet latency decreases as we increase the
node degree by switching from a 2D mesh to a 3D mesh and then to a hypercube. The
simulations were made using the uniform random traffic pattern.

0

2000

4000

6000

8000

10000

12000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Packet injection probability

A
v
e

ra
g

e
 p

a
ck

e
t

la
te

n
cy

 [
cy

cl
e

s]

8x8 2D mesh 4x4x4 3D mech 4x4x2x2 hypercube

Fig. 9 Average packet latency on 64 node mesh NoCs, with 2, 3 and respectively 4 dimensions

We observe a significant increase in the NoC’s performance when using a 3D mesh. The
performance increases even further when placing the 64 nodes in a hypercube topology.
We observed the same behavior torus topologies.

18

5 Benchmarks

In the previous chapter we presented our developed unified framework for the evaluation
and optimization of Network-on-Chip application mapping algorithm. UniMap uses as
input traffic patterns for real applications, described through directed graphs. As stated in
[30] Network-on-Chip benchmarking is still an open problem. The Open Core Protocol
International Partnership (OCP-IP) is currently working to model real applications for
NoC benchmarking [50].

This chapter presents the benchmarks used in this PhD thesis, for studying the
Network-on-Chip application mapping problem. All benchmarks describe real
applications, designed for Systems-on-Chip (SoCs). These applications are modeled
using Communication Task Graphs. We gathered some of the most used CTGs and
APCGs by the NoC research community and integrated them in UniMap, through a
common XML representation. The communication graphs are taken from the Embedded
Systems Synthesis Benchmark Suite (E3S) [44] and from some of the most cited papers
from the field of Networks-on-Chip. We also make our contribution to Network-on-Chip
benchmarking, by proposing two new Communication Task Graphs for a H.264 video
decoder.

In this PhD thesis abstract we present only the first Communication Task Graph
for the H.264 video decoder.
 CTG 0 presents a H.264 decoding system that uses data partitioning: the video
stream is equality divided onto more CPUs, each one of them running a H.264 decoder.

Fig. 10 H.264 CTG 0 (period: 0.0009765625 seconds)

 With the functional partitioning approach, the messages between the decoder
tasks are communicated. With data partitioning, data dependencies among data partitions
are communicated. It is shown in [51] that, with data partitioning, a significant bandwidth
reduction is obtained.

From H.264 CTG 0 we created APCG 0, with 14 cores, by grouping the two tasks
for accessing the intra mode memory (i m mem rd and i m mem wr).

19

6 Optimized Simulated Annealing for Network-on-Chip
Application Mapping. A Domain-Knowledge Approach

Simulated Annealing (SA) [52] is one of the first heuristic algorithms used to address the
Network-on-Chip application mapping problem.

The advantages of Simulated Annealing are given by its ease of implementation,
its applicability to many combinatorial optimization problems and the ability to give
reasonably good solutions [53].

However, the parameters of the algorithm must be carefully chosen, since SA can
easily run for a very long time until it gives a suitable solution. Because Simulated
Annealing is a very general algorithm, several choices must be made in order to
implement it for a particular problem.

This chapter presents a domain-knowledge approach to Network-on-Chip
application mapping problem. We describe an Optimized Simulated Annealing (OSA)
[54] algorithm that we designed for the topological placement of cores onto NoC nodes.
OSA uses an application- and network-based exploration of the search space. Using
knowledge about communication demands, the IP cores are clustered implicitly and
dynamically. We compare OSA with the above mentioned simulated annealing technique
and with a branch and bound algorithm, too. We focus on algorithm speed, memory
consumption and solution quality.

6.1 The Algorithm
OSA was created by continuing the work of Hu and Marculescu. Their Simulated
Annealing and Branch and Bound algorithms are available through the NoCmap project
[55]. We have ported their two algorithms, written in C++, into UniMap (written in Java).
OSA also uses some of the best practices for Simulated Annealing applied for assigning
tasks to processors [56]. We justify our approach by the fact that NoC application
mapping problem is closely related to the NoC scheduling problem [28].

We present next the Optimized Simulated Annealing pseudocode, which is
derived from the general Simulated Annealing from [56].

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

20

Fig. 11 Optimized Simulated Annealing

OSA starts from an initial mapping, Mi, which is randomly generated. Another input
parameter can be the initial temperature, T0, set to 1 by default. The mapping’s cost is
obtained using the bit energy model from [25]. We use a standard geometric annealing
schedule, with

cnNnc
cnccncnnn

CCL cnnOSA ≥∈−−=−−−−−=−= − ,,,
2

)12(

2

))(1(

2

)1(
22

annealing iterations per temperature level. This number corresponds to how many
mappings may be obtained from the current mapping, by moving one core. SA has LSA =
100n2 (we noted the number of NoC nodes with n). It is obvious that OSA SAL L< . Also, in

terms of algorithm complexity, we note that
2

2

() () ()
1 99%

()() 100 ()
OSA OSA

SASA

O L O n O L

O LO L O n

=
=> − =

=
.

This speedup is in perfect concordance with our further experimental results.
While other Simulated Annealing approaches (for NoC application mapping)

select the core to be swapped randomly, OSA does not use a uniformly random
probability when determining the core to be moved. Instead, it adapts the variable grain

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

21

single move (based on probability densities and used for task mapping [56]) into a
variable grain swapping move, which uses two Probability Density Functions (PDFs).
OSA builds a Probability Density Function (PDF) for each core, based on the amount of
data it communicates. This leads to better chances for selecting a core that communicates
more data than a core which communicates less data. As the annealing temperature
decreases, the probabilities uniformly equalize. Therefore, at low temperatures, all cores
have an equal chance to get selected for swapping. Through this approach, OSA uses
problem knowledge (dynamic characteristics) to explore the search space. The following
function is used:

0

1 1
[] icoreToCommT

P SelectedCore i
c T totalToComm c

 = = + − 
 

, where:

- c is the number of cores to be mapped;
- T and T0 are the current and initial temperatures;
- totalToComm is the total amount of data communicated by the all cores;
- coreToCommi is amount of data communicated by core i.

The second core used for swapping is selected by accounting for the communication
volumes between the core to be swapped and the rest of the cores. Another Probability
Density Function is built for each core. It is similar with the one above but, it does not
consider only the data communicated by the core but, also the data received by the core.
Also, this second PDF is not temperature dependent. Each core gets such a PDF
associated before the annealing starts. This PDF is defined

as
totalComm

comm
ccP ij

ji =↔][, where:

- commij is the communication volume between core i and j (this value is positive if
core i sends data to core j, or core j sends data to core i; otherwise, it is zero);

- totalComm is the communication volume of the entire application.
According to the PDF described above, the second core is selected for swapping. Then,
OSA searches, in a uniformly random way, for a direct neighbor of the second selected
core. This one will be swapped with the first selected core. This approach tries to make
communicating cores to attract each other, to cluster themselves, in a natural manner.
OSA’s move function performs an implicit clustering of the communicating cores, using
a stochastic approach.
 Compared to Cluster-based Simulated Annealing (CSA) [57], our algorithm
clusters the cores dynamically, during the annealing phase. OSA does not work with
predetermined clusters, and it also does not cluster the NoC nodes. Network-on-Chip
node clustering is not needed because OSA looks in the NoC node’s neighborhood.
 We call this kind of move a PDF-based swapping move. At every temperature
level, OSA performs exactly LOSA PDF-based swappings.

We use the normalized inverse exponential acceptance function because this is the
one recommended by [56]. OSA stops when the final temperature (Tf = 0.001) is reached
and the number consecutive rejected moves, R, reaches L. This corresponds to the
coupled temperature and rejection threshold stopping condition proposed in [56]. While
in [56] R counts how many moves were rejected since the last accepted move, in OSA we
use R to count how many moves were rejected, per temperature level, since the last
current best mapping was found. This means that while OSA requires no best mapping to
be found during an entire temperature level, the general Simulated Annealing from [56]

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

22

needs to wait until the number of unaccepted moves, counted from the last one accepted,
reaches L. OSA’s stopping condition is therefore more coupled to Tf. than to R. This
makes OSA’s number of iterations to be independent of the NoC topology and its size.
Since we consider that the energy variations are small enough when the final temperature
is reached, we believe our way of computing R is more suitable for a Simulated
Annealing applied to NoC application mapping.

Currently, OSA works only with 2D mesh topologies but, it can be adapted to
work with other NoC topologies, too. Like Hu and Marculescu’s SA, OSA is also capable
to generate the routing functions, in a deadlock- and livelock-free manner, and to check if
the obtained mapping meets the bandwidth constraints.

Compared to the general SA, OSA determines how many iterations to make per
temperature level by considering the mappings’ neighborhood size. Using Probability
Density Functions, OSA performs an implicit and dynamic core clustering (CSA’s
clustering is explicit and static).

6.2 Experimental Results
In this section, we evaluate our Optimized Simulated Annealing by comparing it with
Simulated Annealing and Branch and Bound. The evaluation is three folded. We account
for execution runtime, memory consumption and solution quality. We show next only the
most representative results. More detailed results are available in [58].

We begin with a runtime comparison between OSA and SA and respectively OSA
and BB. The speedups represent an average of the 1000 runtime speedups obtained for
each benchmark.

Fig. 12 OSA speedup over SA

The chart above clearly shows OSA is much faster than Hu and Marculescu’s Simulated
Annealing. We have obtained a 98.95% speedup on average. This is in perfect
concordance with our theoretical speedup expectations. The “lowest” speedups are on
office-automation and PIP, the benchmarks with the smallest number of IP cores. We
justify this significant speed gain mainly by the way OSA computes the number of
iterations per temperature level. This number takes into consideration the NoC size, the

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

23

number of cores to be mapped, and it is much lower than the number used by Hu and
Marculescu.
 The following chart shows how fast OSA is compared to Branch and Bound.

Fig. 13 OSA speedup over BB

It can be seen that OSA is slower than BB by ~ 24%, on average. However, for half of
the benchmarks, OSA is faster. Compared to Branch and Bound, our algorithm obtained
poor runtimes on MPEG4 (more than twice slower), H.264 (~ 1.5 times slower in both
cases) and slower but similar runtimes for PIP, office-automation, VOPD (CTG 1) and
auto-indust. We also observe OSA was faster on the biggest benchmarks: 25% speedup
for MMS (with 25 cores) and ~ 41% speedup for telecom (30 cores).

Next we show how OSA’s memory consumption is, compared to the memory
consumed by Simulated Annealing and Branch and Bound.

Fig. 14 OSA compared to SA in terms of heap memory consumption (a positive value means OSA

consumes less memory)

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

24

Simulated Annealing consumes less memory than OSA when mapping the benchmarks
with more than 16 cores. OSA manages to beat SA on several benchmarks with 16 cores
but, on average, Simulated Annealing consumes with ~13% less memory than our
Optimized Simulated Annealing.
 However, compared to Branch and Bound, OSA takes a little bit less memory on
average. This is shown in the next chart.

Fig. 15 OSA compared to BB in terms of heap memory consumption (a positive value means OSA

consumes less memory)

Actually, this chart points out the tendency of Branch and Bound to grow its memory
requirements as the problem size gets higher: OSA consumes with more than 33% less
heap memory than BB, on telecom.

Now we present the quality of the solutions found by the three algorithms. We are
interested in solutions with the smallest cost possible because the cost function we used
estimates the energy consumed by the Network-on-Chip.
 The following chart compares the mappings found by SA and OSA. For each
benchmark, we evaluate the 1000 mappings returned by the two algorithms and count
how many times one algorithm retuned mappings better (marked with “<” in the chart’s
legend) than the other one. Cases when both algorithms returned mappings with exactly
the same cost are marked distinctively.

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

25

consumer
networking

office-automation
telecom

PIP
MPEG4

MWD
H.264 ctg 0

H.264 ctg 1
VOPD ctg 1

VOPD ctg 0
MMS ctg 0

MMS ctg 1
AVERAGE

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.
6

0%

0
.0

0
%

0
.0

0
%

0.
1

0%

0
.0

0
% 3
5.

90
%

14
.3

0
%

38
.4

0%

47
.5

0
%

5.
3

0% 3
6.

60
%

6
0.

60
%

5
7.

0
0%

21
.3

6
%

0.
20

%

0.
0

0%

0.
0

0%

1
.3

0
%

0.
0

0%

28
.7

0
%

0.
70

%

36
.0

0
%

47
.5

0
%

4
4.

8
0%

4
5.

70
%

38
.6

0
%

42
.8

0
%

2
2.

2
7%

SA < OSA SA = OSA OSA < SA

Benchmark

Fig. 16 OSA mapping costs, compared to SA mapping costs

We notice that both algorithms find the same “best solution”, after all 1000 runs, for
benchmarks: networking, office-automation and PIP. For the last two of these three
benchmarks, we confirm the solution is optimal because we applied an exhaustive search.
Overall, OSA finds worse solutions than SA for 6 of the 14 benchmarks used in our
simulations: MPEG-4, MWD, H.264 (CTG 0), MMS (CTG 0), MMS (CTG 1) and
consumer.
We have also found out that SA and OSA always find the same best solution. However,
Branch and Bound fails to obtain a mapping that consumes at most like the best mapping
found by SA and OSA in two cases: for MMS (CTG 1), the energy lost with BB’s
mapping would be 0.1 % and for auto-indust, the energy loss is ~6%.
 We measured the difference between the worst and best mappings found for each
benchmark by SA and OSA. With our Optimized Simulated Annealing, the variation
between the worst and best mappings was not higher than 8%. However, with SA we
obtained the highest variation to be 70% for MMS (CTG 1). For the rest of the
benchmarks SA did not varied with more than 6%. Excluding MMS (CTG 1), the SA
average variation was 1.51% and the OSA average variation was 2.56%. If we also
consider MMS (CTG 1), SA had an average variation of 5.85% while OSA’s value was
less than half (2.53%). We conclude that the variations between the best and worst
mappings are comparable for SA and OSA.

Fig. 17 shows how many times the best solution, given by all three algorithms,
was found by each one of them.

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

26

Fig. 17 Best solution percentage

This chart shows that OSA finds the best solution more often than SA for several
benchmarks: auto-indust, telecom, MPEG4, H.264 (CTG 0), VOPD (CTG 1). BB
outmatches OSA for the MMS benchmarks, VOPD (CTG 0), H.264 (CTG 1), MWD and
consumer. Another observation is related to BB: it finds the best solution with probability
1 for all benchmarks, except auto-indust and MMS (CTG 1).

We also averaged the quality of the 1000 mappings per benchmark. Branch and
Bound is the algorithm that, on average, gives the mapping with the smallest energy
consumption. It fails just on auto-indust benchmark, where OSA provides the best
average mapping cost. Optimized Simulated Annealing achieves for MMS (CTG 1) a far
better average cost compared to Simulated Annealing: more than 34% energy gain is
obtained with OSA. For the rest of the benchmarks, the differences between OSA and SA
are less than one percent. Compared to BB, OSA provides solutions that are worse with
no more than 2.5% on each benchmark, except auto-indust, where OSA is better with
more than 6% than Branch and Bound.

Using 1000 simulations per benchmark, we have previously shown that the
percentage of better solutions was lower for OSA than for SA on six benchmarks:
MPEG-4, MWD, H.264 (CTG-0), MMS (both CTGs) and consumer. We present here our
attempt of increasing OSA’s quality of solution by increasing the initial temperature. We
applied this technique on the benchmarks mentioned above, with the purpose of getting
OSA’s percentage of better solutions over SA’s percentage. Increasing the initial
temperature allows OSA evaluate more mappings. Also, the higher the temperature, the
bigger is the probability to accept “bad” moves during the annealing process.
 Through this technique the quality of solution for our Optimized Simulated
Annealing got better, matching SA’s quality of solution i.e., OSA’s percentage of better
mappings overcame the corresponding SA percentage. Still, we had one exception: we
were unable to obtain the desired outcome for MMS (CTG 1). We disregard this
undesired result due to the fact that in this case, on average, SA consumes with more than
34% more energy than OSA.
 Note that we have increased OSA’s initial temperature exponentially because, due
to the OSA’s geometric annealing schedule, an exponential increase of temperature leads
to a linear increase of the number of temperature levels.

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

27

 The following table presents OSA’s speedup over SA, in terms of runtime, and
the initial temperature required by OSA to beat SA.

Benchmark Speedup (%) Initial temperature
MPEG4 97.51 1e10
MWD 96.76 1e10
H.264 (CTG 0) 99.18 1e2
MMS (CTG 0) 97.41 1e17
MMS (CTG 1) 61.40 1e107
consumer 98.91 2

If we ignore MMS (CTG 1), we see that the speedup remained high even with the
increase of initial temperature.

In order to illustrate how important OSA’s clustering technique is, we present
next a comparison between OSA with and without clustering. The single thing that
distinguishes OSA without clustering from OSA (with clustering) is that, in the first case,
the simple random core swapping is used, without any restrictions.
 The following chart shows how frequently the best solution is found.

Fig. 18 The influence of OSA’s clustering on best solution percentage

For all benchmarks, OSA with clustering finds the best solution more frequently than
OSA without clustering. More than this, we observe significant differences for the
benchmarks mapped onto the 4x4, 5x5 and 6x5 2D mesh NoCs. It is important to
mention that the two OSA variants find the same best solution for all benchmarks, except
MMS (CTG 1). In this case, the best solution found by OSA w/o clustering is with 0.02%
worse.
 The next chart shows how much energy is consumed on average by OSA without
clustering (compared with OSA using clustering).

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

28

Fig. 19 Average energy consumed by the mappings obtained with OSA without clustering

It may be noticed that OSA without clustering finds mappings that consume additional
energy. The clustering technique leads to lower energy consumption with more than 1%
in some cases. OSA with clustering always gives better average results than OSA without
clustering.

Finally, we present the simulation results on bigger 2D meshes. We used four
instances of the VOPD benchmark with 16 cores (like in [57], because applications with
a high number of cores are lacking and because we preferred using real applications
instead of randomly generating core graphs, like in [25], [37]) and obtained a benchmark
with 64 cores. Using SA, OSA and BB, we mapped it on an 8x8 2D mesh. SA was run
ten times and OSA and BB run 100 times.

We obtained an average running time of ~ 12.65 hours (per simulation) for SA.
OSA ran for approximately 155 seconds, while BB required just ~ 114 seconds.
Averaging the results from the 100 runs, OSA was ~36% slower than BB. Still, OSA
runtime is significantly lower than CSA’s runtime: 4750 seconds [57].

OSA consumes with approximately 39% less memory than Branch and Bound.
During the 100 simulations, OSA’s peek memory consumption was 37.3 MB, while BB
required a maximum memory of 85 MB.

The best mapping was found by Simulated Annealing. However, OSA’s best
mapping is only ~ 0.7% worse. Branch and Bound finds a best mapping that consumes
around 64% more than the best mapping found by SA. Averaging the 100 mappings done
by OSA and comparing them with the ones obtained with BB, we have observed that
Branch and Bound obtains on average a mapping cost ~70% worse.
 We have aggregated all the E3S benchmarks used in our previous simulations and
obtained 84 cores that we mapped onto a 10x9 2D mesh. Again, SA run 10 times, while
OSA and BB run 100 times.

SA required a very big time to run one simulation: approximately 70 hours. OSA
ran for approximately 526 seconds, while Branch and Bound needed only 380 seconds.
Averaging the results from the 100 runs, Optimized Simulated Annealing was ~48%
slower than BB.

OSA consumed approximately the same of memory Branch and Bound required.
During the 100 simulations, OSA’s peek memory consumption was 62 MB, while BB

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

29

required a maximum memory of 71 MB. We believe Branch and Bound manages to keep
the memory consumption not growing exponentially by pruning most of the search space
(we observed BB, in several simulations, to prune 85% to 93% of the explored search
space).

Averaging the 100 mappings done by OSA and comparing them with the ones
obtained with BB, we have observed that Branch and Bound obtains on average a
mapping cost ~76% worse. Simulated Annealing found the best solution but, it is better
than OSA’s best solution by only 0.09%.
 Using the H.264 (CTG 1), MMS (CTG 0), MMS (CTG 1), MPEG4, MWD and
VOPD (CTG 0) benchmarks, we have obtained 97 cores that we mapped onto a 10x10
NoC. Because of the huge running time SA needed for mapping the previous application,
we simulated these application with 97 cores only with OSA and BB (both were run ten
times).
 Optimized Simulated Annealing run on average approximately 15.9 minutes per
simulation. Branch and Bound needed only two thirds of this time: ~15.44 minutes for
each mapping simulation (OSA is only 3% slower than BB).
 Branch and Bound consumed around 40 MB of memory and Optimized
Simulated Annealing required approximately 45 MB.
 Once more, OSA found every time mappings better than the ones found by
Branch and Bound. Averaging the 100 mappings done by OSA and comparing them with
the ones obtained with BB, we have observed that Branch and Bound obtains on average
a mapping cost ~76% worse.
 By combining all non E3S benchmarks (PIP, H.264, MPEG4, VOPD, MWD,
MMS), we get a benchmark with 131 cores, which we mapped onto a 12x11 Network-on-
Chip. OSA and BB mapped this benchmark ten times.
 OSA required, on average, approximately 51 minutes mapping this application.
Branch and Bound was ~15% faster: it needed only around 44 minutes, on average.
 In this case, OSA consumed less memory, 36 MB, while BB memory
requirements were 14% higher.
 Optimized Simulated Annealing found each time a mapping that consumes
significantly less memory. On average, OSA’s solutions need 79.4% less memory than
BB’s solutions.
 Finally, we combined all of our benchmarks an obtained an application with 215
cores. We used OSA and BB to map it (ten times) onto a 15x15 NoC.
 Optimized Simulated Annealing run for 8.4 hours, on average. OSA consumed on
average 265 MB of memory, for each mapping.
 Branch and Bound run on average 3.77 hours for each mapping. This is more than
half OSA’s runtime. Memory consumption was also significantly lower: only 158 MB.
However, we obtained no solution from BB, after all ten mapping. All mapping attempts
will Branch and Bound failed. No suitable solution was found because, each time, the
algorithm pruned more than 98.7% of the search space. This severe pruning did not allow
BB to finish mapping the application. This leaves us to believe that Branch and Bound’s
memory consumption does not grow exponentially but, the quality of solution is heavily
affected, up to the point where the algorithm does not give any solution.

30

7 Designing Domain-Knowledge Evolutionary
Algorithms for Network-on-Chip Application Mapping

Evolutionary Computing (EC) [59] is a part of Artificial Intelligence (AI) inspired from
the evolution process encountered in Biology. The heuristic algorithms from this field of
research address NP-hard optimization problems by means of natural selection and
evolution mechanisms. The search space is filled with candidate solutions, called
individuals.
 Evolutionary Algorithms (EAs) are used in many research fields to address
single-objective and multi-objective optimization problems, based on the concept of
Pareto efficiency [60].
 In this chapter, we use UniMap (see Chapter 4) to evaluate and optimize two
evolutionary algorithms: an Elitist Genetic Algorithm (EGA) and an Elitist Evolutionary
Strategy (EES). After approaching our problem with an Optimized Simulated Annealing
technique, we decided to switch to evolutionary algorithms due to their intrinsic
parallelism. Evolutionary techniques perform searches starting (in parallel) from multiple
points in the search space. Our evaluated algorithms optimize the Network-on-Chip
communication energy. We consider multiple crossover and mutation operators, specific
for permutation problems, like NoC application mapping is. Using problem specific
knowledge, we propose such context-aware operators. We show such operators improve
the evolutionary algorithms’ performance. We try to find out which crossover and
mutation leads to the best solutions. We also research whether crossover or mutation
helps more the evolutionary algorithms. These algorithms are compared with our
Optimized Simulated Annealing (OSA) technique (see Chapter 6). Finally we approach
our problem in a multi-objective way: besides minimizing NoC communication energy,
we also try to obtain a mapping that is thermally balanced.

The work presented in this chapter was submitted (on July 21st
, 2011) to the

Journal of Systems Architecture (JSA - http://ees.elsevier.com/jsa). Since July 25th, 2011,
it is under review with manuscript number JSA-D-11-00103.

7.1 Energy- and Performance-Aware Genetic Algorithm
We developed in UniMap an Energy- and performance-aware Genetic Algorithm (EGA).
EGA is based on the Generational Genetic Algorithm (GGA) [61]. As compared to GGA,
EGA implements an elitist mechanism.
 EGA is developed for MxN 2D mesh NoCs but, it may be extended to work with
other topologies as well. The algorithm uses a bit-energy analytical model for computing
the NoC communication energy. It considers that Dimension Order Routing is employed
but, it can also generate a deadlock- and livelock-free routing function using the turn [62]
and odd even [63] models. Additionally, network bandwidth constraints may be
considered.

7.2 Elitist Evolutionary Strategy
Elitist Evolutionary Strategy (EES) [59] is available in jMetal. We adapted this algorithm
to our problem by using the same energy-aware fitness function like in the EGA case.

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

31

7.3 Developing Problem Knowledge Crossovers
This section presents the crossover operators used in this research. We work with
crossover operators for permutation problems. There are many such operators in literature
(order, inversion, cycle etc.) [64]. We used Position Based Crossover and Partially
Mapped Crossover. Position Based Crossover (PB) [65] aims keeping absolute position
information during the recombination process. Partially Mapped Crossover (PMX) [66]
tries to preserve genes’ order, adjacency and position as much as possible. PMX is one of
the most used crossover operators for permutation problems [59].

Next, we present two new crossover operators that we propose for the Network-
on-Chip application mapping problem.

7.3.1 NoC Position Based Crossover (NPB)
NoC Position Based Crossover (NPB) extends PB so that the cores that are kept fixed are
not selected randomly. We rather keep fixed the hot spot cores, i.e. the cores which
communicate the most data.
 Our approach, based on hot spots, is similar to the approach from [67]. The
difference is that, we do not simply swap the hot spot core with a randomly chosen core;
we rather fix the first half of the most communicating cores. While the crossover from
[67] behaves as a swap mutation, NPB acts as a Position Based crossover, with context-
awareness.

7.3.2 Mapping Similarity Crossover (MS)
Our developed Mapping Similarity crossover (MS) has the purpose of identifying the
topological similarities between two (parent) mappings and replicating them in the
offspring. MS has two phases. The first phase tries to identify the mapping similarities
between the two mappings. By doing so, the common characteristics of the two mappings
are identified. The cores mapped in a similar way in both parents are mapped the same in
the two children: child 1 maps the similar cores like parent 1 and child 2, like parent 2.
We should point out that the offspring keep the common characteristics of their parents,
either good or bad. The goal of the first MS phase is to decide which genes the offspring
inherit from their parents. MS attempts to improve the offspring through a secondary
phase, which performs a greedy mapping for the rest of the genes. This phase tries to
raise the children fitness by rearranging the cores which are not mapped similarly, hoping
they will be placed better with respect to the similar cores.

We argue our MS crossover operator does not simply act as a swap mutation
operator like in the research of Ascia et al. [64], [68], [67]. MS instead tries to identify
mapping similarities, which are inherited from both parents. This emphasizes the
crossover character.

7.4 Mutation Operators
This section presents the two mutation operators used in this research. We chose to work
with swap mutation, which is a very common genetic operator in permutation problems.
It simply interchanges two randomly selected genes.
 Using our developed Optimized Simulated Annealing algorithm as a mutation
operator we obtain a hybrid algorithm: an Evolutionary Algorithm which incorporates a

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

32

Simulated Annealing technique. OSA performs a context-aware mapping and outputs two
cores which must be swapped. It performs an iteration each time it gets called by the
Evolutionary Algorithm. When the number of iterations reaches OSA’s number of
iterations per temperature level, the annealing temperature is decreased.
 By using OSA as a mutation operator, we propose using hybrid algorithms for
NoC application mapping. More precisely, we have a meta-heuristic, with an
Evolutionary Algorithm as the main algorithm. The EA encapsulates a NoC specific
algorithm, as a mutation operator (OSA). This approach allows us to benefit from the
intrinsic parallelism that EAs contain. Also, the exploration has context-awareness,
through the proposed mutation. The mutation may be performed by any algorithm for
NoC application mapping. Any EA using a mutation operator may be used.

7.5 Multi-objective Optimization
NoC communication energy is minimized by placing the communicating IP cores as
close as possible, onto the NoC tiles. Since we are interested to evaluate the performance
of the genetic operators used in this research, we do a multi-objective optimization, too.
Our second objective is to do a thermal-aware placement of the IP cores. Uniformly
distributing the IP cores’ temperature across the network leads to the minimization of the
hotspot temperature. Two IP cores that consume significant power should be placed at a
greater distance from one another. However, this means our thermal balance objective is
in contradiction with our energy objective.

7.6 Experimental Results
We present next only the most representative results obtained with our research on
domain-knowledge evolutionary algorithms for Network-on-Chip application mapping.
Our entire set of results is available in [69].

We start by measuring the mapping cost found for each benchmark. Since (in
order to improve the accuracy of our results) we map the same application multiple times,
we obtain an average mapping cost (energy). We get such average cost for every
evolutionary algorithm, with every crossover operator and for each mutation probability.
For EGA with MS crossover and OSA mutation, we also limit the similarity function to
the IP cores that are one – EGA-MS-OSA (1) – or two hops away – EGA-MS-OSA (2).
 We work with the metric that we call Normalized Absolute Deviation (NAD)
from the minimum (in this case the minimum average energy). This metric is based on
the statistic absolute deviation (AD) metric. Because we deal with a minimization
problem, we consider the absolute deviation from the minimum average cost from the
entire data set (Xb). Then, we normalize AD by dividing it to }max{ bX (the maximum

average cost from the entire data set). Therefore, the normalized absolute deviation (of

data point bb Xx
m

∈) from the minimum is
}max{

}min{

b

bb
b X

Xx
NAD m

m

−
= . The index bm marks a

benchmark evaluated with an algorithm with at a certain mutation probability. For each
benchmark, we obtain its NAD, at every mutation rate, using the above formula. The data
set Xb contains the average mapping energies obtained by all evolutionary algorithms, for
the specified benchmark. At each mutation level, we average the NADs of all our

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

33

benchmarks. Therefore, we have
B

NADNADNAD
NADAverage mmm B

m

+++
=

...21 , with B

being the number of benchmarks and m the mutation probability
(%}100%,...,20%,10{∈m). We use this metric because directly comparing the average
energies obtained for different applications is infeasible since each application has its
own energy domain (which usually differs significantly).
 Fig. 20 presents how much the average mapping cost deviates from the minimum
average cost, found by all algorithms. We show the results obtained only for the big
benchmarks (VOPD 4x, all-mocsyn, 97-cores, 131-cores and 215-cores) because our
evolutionary algorithms perform similarly on the rest of the benchmarks (in terms of
average mapping cost). For every algorithm, only the point corresponding to the mutation
probability where it performed best is shown.

1.25% 1.50% 1.75% 2.00% 2.25% 2.50% 2.75% 3.00% 3.25% 3.50% 3.75% 4.00% 4.25% 4.50%
10

20

30

40

50

60

70

80

90

100

EGA-SWAP EGA-OSA EGA-MS-SWAP EGA-MS-OSA EGA-MS-OSA (1)
EGA-MS-OSA (2) EGA-NPB-SWAP EGA-NPB-OSA EGA-PMX-SWAP EGA-PMX-OSA
EES-SWAP EES-OSA OSA

Average NAD [%]

M
ut

at
io

n
p

ro
ba

b
ili

ty
 [%

]

Fig. 20 Algorithms’ comparison based on their average normalized absolute deviation, from their

common minimum average cost (only big benchmarks)

It may be easily observed that all algorithms perform significantly better with OSA
mutation than with swap mutation. EES-OSA has the smallest deviation, among all
algorithms, followed by EGA-PMX-OSA. EGA-MS-OSA is the next best performing
algorithm in this case. We even notice a slightly better performance for EGA-MS-OSA
(1) (1.64% deviation) than for EGA-MS-OSA (1.77% deviation). However, EGA-MS-
OSA (2) performs much worse (3.21% deviation, at 100% mutation probability). After
EGA-MS-OSA we have EGA-OSA and EGA-NPB-OSA. EGA-OSA is the algorithm
that gives the smallest deviation at the lowest mutation rate: 30%. EGA-NPB-OSA is
better than EGA-MS-SWAP. Still, EGA-MS-SWAP clearly beats OSA, making MS the
only crossover than outmatched OSA with both mutation operators. Mapping Similarity
is the only crossover operator that performed well regardless of the mutation operator. PB
crossover also does not provide bad results but, MS is clearly better (EGA-SWAP has a
3.52% deviation, with only 0.02% smaller than OSA’s deviation). The performance of
our other crossover operator, NPB, is not good when we compare it with PB. In both

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

34

cases (OSA or swap mutations), NPB performs worse than PB. However, we observed
(on all benchmarks) that NPB performed better and better as mutation grew. It performed
best at 100% mutation probability (similarly to PMX). PB performed best at 80%
mutation (on all benchmarks). Raising the mutation made PB perform worse. EGA with
MS performed best at 50% - 60% mutation rate, on all benchmarks. We may conclude
that MS is the crossover operator that contributes the most at obtaining a good average
mapping cost. The rest of the operators rely significantly more on the mutation operator.
 In conclusion, in terms of average mapping cost, the Elitist Evolutionary Strategy
with OSA mutation performs the best. The Energy Aware Genetic algorithm has the best
behavior with OSA mutation and with PMX crossover. Our developed Mapping
Similarity crossover gives similar results: its normalized absolute deviation is with only
0.25% worse than the one of PMX. NPB performs worse on the big benchmarks. Its
deviation is with 1% higher that the one of PMX.

Next, we are interested to find how good are the best mappings found by each
algorithm. In order to compare the best solutions found by all algorithms, we have
identified for each application the best solution found by all algorithms. Then, for each
application, with each algorithm and mutation probability, we have computed the
additional energy (AE) its best mapping consumes, with respect to the best solution found
by all algorithms. Using the same notation like for NAD computation, we define the

Additional Energy metric as
mb

m

m x

Xx
AE bb

b

}min{ '−
= . In this case however, we work with a

different data set. '
bX contains the minimum mapping energies (not the average ones, like

in the previous case). Finally, like for average NAD, we averaged the additional energies
for all benchmarks. The following chart presents these results. We show for every
algorithm the value at the mutation level where it obtained the lowest average additional
energy.

0.25% 0.35% 0.45% 0.55% 0.65% 0.75% 0.85% 0.95% 1.05% 1.15%
10

20

30

40

50

60

70

80

90

100

EGA-SWAP EGA-OSA EGA-MS-SWAP EGA-MS-OSA EGA-MS-OSA (1)
EGA-MS-OSA (2) EGA-NPB-SWAP EGA-NPB-OSA EGA-PMX-SWAP EGA-PMX-OSA
EES-SWAP EES-OSA OSA

Average AE [%]

M
ut

at
io

n
pr

o
ba

bi
lit

y
[%

]

Fig. 21 Average additional energy consumed by the best mappings found by each algorithm,

compared to the best mappings found by all algorithms

EGA-MS-OSA is the algorithm that has the most mappings that are the best. On average,
the best mappings found with this algorithm introduce just 0.29% additional energy. Very

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

35

close to this result is EES-OSA, with 0.3% additional energy. After EGA-PMX-OSA
(0.36%), follow EGA-NPB-OSA and EGA-MS-OSA (1), both with 0.52% additional
energy. Note that all the algorithms except EES-SWAP and EGA-PMX-SWAP find, on
average, better mappings than OSA. This chart also shows that swap mutation produces
worse mappings than OSA mutation, regardless the algorithm. However, there is an
exception: EGA-MS-OSA (2) does not produce better mappings than all algorithms with
swap mutation.

We conclude our solution quality based analysis by showing how often each
algorithm manages to reach the best solution. We refer to the best solution found by all
algorithms, not to the best solution each algorithm found. Hence, it is possible an
algorithm has a zero best solution percentage. We define the Averaged Best Solution

percentage at mutation rate m as [%]
...21

B

BSBSBS
BSAverage mmm B

m

+++
= .

mbBS is

the Best Solution percentage for benchmark b, at mutation level m. It represents how
many times an algorithm finds the best mapping, found by all algorithms.
 On the big benchmarks, OSA is unable to find the best solution. Also, not all of
the evolutionary algorithms manage to reach the best solution. This may be seen in the
following figure.

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00% 16.00% 18.00% 20.00% 22.00%
10

20

30

40

50

60

70

80

90

100

EGA-SWAP EGA-OSA EGA-MS-SWAP EGA-MS-OSA EGA-MS-OSA (1)
EGA-MS-OSA (2) EGA-NPB-SWAP EGA-NPB-OSA EGA-PMX-SWAP EGA-PMX-OSA
EES-SWAP EES-OSA OSA

Average BS [%]

M
ut

at
io

n
p

ro
b

ab
ili

ty
 [%

]

Fig. 22 Average best solution percentage on big benchmarks

EGA-NPB-OSA is the algorithm that has the highest best solution percentage, which is
22% at 90% mutation probability. EES-OSA and EGA-OSA have a value of 20%. Than,
with just 2%, we have EGA-PMX-OSA, EGA-MS-OSA and EGA-MS-SWAP. We
notice all the algorithms using swap mutation are unable to reach the best solution. The
only exception is EGA-MS-SWAP.
 Our conclusion is that NPB crossover gives the best solution percentage, on the
big benchmarks. Mapping Similarity and PMX crossovers give a similar best solution
percentage. OSA mutation is essential for EES because with swap mutation EES
performs worse even than EGA with NPB crossover and swap mutation.

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

36

Regarding the optimal mutation probability, we observed there are algorithms,
like EGA-NPB-SWAP, for which we obtained exactly the same mutation rate. However,
in general there is no ideal mutation probability. Our experiments indicate the optimal
mutation probability may vary from 20% up to 100%. For EGA-MS-OSA, we got the
same optimal mutation probability in terms of average and best mapping cost. We
conclude that mutation probability is application and algorithm dependent. The lowest
mutation rate is consistently encountered when working with our developed Mapping
Similarity crossover. This indicates MS is the crossover operator that relies the least on
mutation to find the best NoC application mapping. We tried to limit the similarity
function of MS by considering only the cores which are one or two hops apart in the
NoC. Overall, we did not obtain significantly better results. EGA-MS-OSA (1) and EGA-
MS-OSA (2) require a higher mutation probability to function optimally.

We present next how some of our algorithms converge in time. Since the previous
results showed us that OSA mutation gives better results than swap mutation, we focus
only on these algorithms: EGA-OSA, EGA-PMX-OSA, EGA-NPB-OSA, EGA-MS-OSA
and EES-OSA. We ran each of the five algorithms for 1000 generations per application.
To improve the accuracy of our simulations, we ran each application for 100 times (by
setting the random number generator seed from 1 to 100). Finally, we averaged the
energy cost of all 100 mappings per application and per generation. We worked with the
mutation values determined by our average cost analysis.

Fig. 23 shows how the five algorithms converge on our biggest benchmark. We
mention that for all the other benchmarks we obtained the same behavior, as we will
detail next.

Fig. 23 Algorithms’ convergence for 215-cores benchmark

All algorithms manage to reduce the mapping energy significantly, within the first 100
generations. EGA-OSA has the lowest convergence speed. EGA-PMX-OSA, EGA-NPB-
OSA and EES-OSA behave approximately the same. EGA-MS-OSA is the algorithm that

0 100 200 300 400 500 600 700 800 900 1000
0.00E+000

1.00E+010

2.00E+010

3.00E+010

4.00E+010

5.00E+010

6.00E+010

7.00E+010

EGA-MS-OSA EGA-PMX-OSA EES-OSA EGA-NPB-OSA EGA-OSA

Generations

Av
er

a
g

e
e

n
er

g
y

[p
ic

o
Jo

u
le

]

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

37

converges the fastest during the first generations. After that, its convergence speed
decreases and it is outrun by EGA-PMX-OSA, EGA-NPB-OSA and EES-OSA. We
believe this is justified by the greedy approach from the second phase of our Mapping
Similarity crossover.
 We measured when each algorithm reaches its best solution during the 1000
generations, for each benchmark and we averaged the results. EGA-OSA converges in
732 generations. It requires the most number of generations to obtain its mapping with
the best communication energy. EGA-MS-OSA converges in 562 generations.
Algorithms EGA-PMX-OSA, EGA-NPB-OSA and EES-OSA require 475 generations.
EES-OSA is the algorithm that, on average, has the fastest convergence speed (424
generations).

Finally, we switch from a single objective to multi-objective Network-on-Chip
application mapping. Besides minimizing communication energy, we are now also
interested in obtaining a thermal balanced NoC design. Using NSGA-II and SPEA2
genetic algorithms implemented in the jMetal library, augmented with all our genetic
operators, we evaluated NoC mappings for all-mocsyn. This is the benchmark that
contains all E3S applications. For E3S we know how much power the IP cores consume
to execute a particular task. Each algorithm ran once, with each crossover – mutation
combination, for 1000 generations. Each time we started from the same initial population.
We used the optimal mutation probabilities determined by our average mapping cost
analysis.
 Fig. 24 shows, for every algorithm, the (normalized) hypervolume [60] obtained
at each generation. For a minimization problem (like ours), the hypervolume is defined as
the volume enclosed by the Pareto front and a reference point. The coordinates of this
point are determined by the maximum values of the objectives. The values are also
normalized using the (constant) volume between the coordinate systems’ origin and the
hypervolume reference point.

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

38

Fig. 24 (Normalized) hypervolumes, for all evaluated algorithms

The hypervolume grows significantly until the first 200 – 300 generations, for all
algorithms. Then, it keeps growing slowly until the last generation. This indicates how
the algorithms converge. The algorithms using our developed Mapping Similarity
crossover have a very fast convergence speed within the first 100 generations. However,
in the end, their hypervolumes are the smallest. This indicates MS leads to the worse
performance in this multi-objective case. However, if we want fast results, then this will
be a suitable crossover. Looking at the hypervolume values within the last generations,
we ordered the algorithms. This order may be seen in the chart’s legend. It may be
observed that PMX performs the best. It is followed by NPB, PB and finally MS. We also
observed that both NSGA-II and SPEA2 performed better with PMX and swap mutation.
The performance with OSA mutation was worse. These multi-objective results appear to
be in contradiction with our previous single-objective results. The explanation resides in
the fact that our two objectives are in a mutual contradiction. OSA mutation, MS and
NPB crossover work to optimize energy but, this implicitly leads to worsening the NoC
mappings in terms of thermal balance. NPB is more suitable than MS (in this case)
because it just identifies hot spot cores, in terms of energy. However, they may also be in
terms of thermal balance because a highly communicating core might also have a higher
temperature.
 Fig. 25 shows the Pareto front obtained in the last generation by combining the
Pareto fronts of all the evaluated algorithms. This combined Pareto front holds only the
non-dominated individuals from all the merged Pareto fronts.

0 100 200 300 400 500 600 700 800 900 1000
0.23%
0.25%
0.27%
0.29%
0.31%
0.33%
0.35%
0.37%
0.39%
0.41%
0.43%
0.45%
0.47%
0.49%
0.51%
0.53%
0.55%
0.57%
0.59%
0.61%
0.63%

NSGAII-PMX SPEA2-PMX NSGAII-PMX-OSA SPEA2-PMX-OSA SPEA2-NPB-OSA NSGAII-NPB-OSA

NSGAII-NPB SPEA2-NPB SPEA2-PB-OSA NSGAII-PB-OSA SPEA2-PB NSGAII-PB

NSGAII-MS-OSA SPEA2-MS NSGAII-MS SPEA2-MS-OSA

Generations

(N
or

m
al

iz
ed

) h
yp

er
vo

lu
m

e

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

39

Fig. 25 Combined Pareto front (generation 1000)

It may be seen that PMX is the single crossover that leads to the best solutions, found by
either NSGA-II or SPEA2. We also observe there are a lot of good solutions in terms of
energy. All these mappings were found using OSA mutation. With swap mutation, we
managed to find three good solutions in terms of thermal balance. The significantly
higher number of good energy-biased solutions indicates the fact we tried to optimize
only energy with NoC application mapping knowledge. Probably using a crossover which
also optimized energy was too much bias towards a single objective. This is how we
explain PMX was the best performing crossover. Anyway, PMX was one of the best
performing crossovers in the single-objective case, too.

40

8 Application Driven Automatic Design Space
Exploration for System-on-Chip Architectures

In this chapter we propose a method for performing an application driven automatic
design space exploration for System-on-Chip (SoC) architectures. We integrate UniMap
with a Framework for Automatic Design Space Exploration (FADSE) [70] with the
purpose of automatically finding the best SoC design for any given application, in a
multi-objective way. Our objectives are: SoC energy consumption, SoC area and
application runtime.

Using UniMap’s features, we simulate an entire computing system, consisting of
tens of heterogeneous IP cores that are mapped onto the nodes of a Network-on-Chip.

FADSE automatically configures this System-on-Chip. It then simulates it using
UniMap’s simulator and gives the simulation results to the DSE algorithm that drives the
search process.

We show a feasible DSE workflow that meets our requirements and we identify
the most suitable SoC architectures, for a given application, in terms of energy, area and
runtime. We also compare four DSE multi-objective algorithms (two genetics and two
bio-inspired) with the purpose of identifying the algorithm that performs the best.

8.1 Framework for Automatic Design Space Exploration
The Framework for Automatic Design Space Exploration (FADSE) [71], [72] is
developed by Horia Calborean from “Lucian Blaga” University of Sibiu, Romania, as
part of his PhD thesis [70]. FADSE is a client-server tool that includes many state of the
art algorithms through jMetal [73]. FADSE was successfully used for a multi-objective,
hardware-software co-design exploration of the design space for a superscalar system
[74], [75].

8.2 Design Space Exploration Workflow
Our DSE workflow starts with mapping applications onto NoC architectures using
UniMap’s algorithms. The mappings are evaluated by estimating the NoC
communication energy with an analytical model. The best solutions found are saved into
a database.
 For each application, FADSE searches for the best SoC design by considering the
first ten best mappings (a higher number of best mappings may be used depending on
how many resources are available). Note that we select these mappings from all best
mappings found by all UniMap mapping algorithms: Simulated Annealing, Branch and
Bound, Optimized Simulated Annealing and Elitist Genetic Algorithm and Elitist
Evolutionary Strategy, with all their variants, evaluated in Chapter 7.
 Then we configure FADSE to start a DSE process, driven by a multi-objective
algorithm. FADSE evaluates different System-on-Chip architectures. Firstly, it selects the
type for each IP core. The given mapping already contains information about what IP
core will execute what task. However, FADSE will try with other compatible IP cores as
well. Any IP core capable of executing a task is considered compatible with that task.
Note that the analytical model used for obtaining the best mappings does not account for

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

41

IP core types. Secondly, it instantiates a SoC architecture by placing the selected IP cores
onto the nodes of a NoC that it configures. Finally, it calls UniMap’s ns-3 NoC simulator.
We model the tasks’ execution using Finite State Machines. The network
communications are created using our network traffic generator. ns-3 NoC measures
application runtime, SoC energy and SoC area. These are the three objectives of our DSE
workflow.

Save best

mappingsMap cores

onto NoC
FADSE

Simulate SoC

architecture

Select

mapping

Mappings

database

ns-3 NoC

simulator IP cores

database

Select

cores

Apply

mapping

Output runtime, energy, area

UniMap
Fig. 26 Application driven DSE workflow for SoC designs

We use the E3S [44] IP core library, which provides data about the power

consumed by each core while executing a certain task and while idle and the area
occupied by every core.

For our NoC architecture, power and area metrics are measured using ORION 2.0
[45], which is integrated with UniMap’s NoC simulator (see section 4.2). We work with
the Network-on-Chip total power, which includes leakage and dynamic power for routers
and links. Similarly, NoC area is the sum of routers and links area.

We measure application runtime by running the application for a specified
number of CTG iterations. We determine the number of CTG iterations empirically, so
that the simulations run fast enough so that our DSE process ends in a feasible amount of
time.
 The output of this workflow is a Pareto front with the “best” (near optimal) SoC
configurations, for a particular application.
 In the next section we give details about how exactly we performed the
simulations, on which benchmarks, what architectural parameters we varied and how
UniMap and FADSE were configured. We must point out that, during the workflow, the
NoC topology is kept unchanged. This is because the topology is basically the single
NoC architectural element used by the mapping algorithms. Changing it would lead to
inconsistencies, i.e. doing and comparing mappings for different NoCs. Obviously, our
workflow may also be applied for different NoC topologies. By doing so we could also

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

42

determine the most suitable NoC topology. However, this would require adapting our
application mapping algorithms for these other NoC topologies. Only then we will be
able to obtain the best mappings for other NoC topologies.

8.3 Experimental Results
We show next some preliminary results obtained with our previously presented
application driven design space exploration technique for System-on-Chip architectures.
We managed to explore all ten best mappings just for the telecom benchmark. For the rest
of benchmarks we explored only the first best mapping.

We start with the telecom DSE. In the next figure we use the hypervolume metric
to show how our four DSE algorithms progress while searching for the best SoC designs
for the telecom benchmark. We obtained hypervolumes for each DSE algorithm, on every
one of the ten telecom mappings. Then we computed the average hypervolume.

0.17

0.19

0.21

0.23

0.25

0.27

0.29

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Generation Count

A
ve

ra
ge

 h
yp

er
vo

lu
m

e

NSGA-II SPEA2 SMPSO OMOPSO

Fig. 27 Average hypervolumes over all ten best telecom mappings

It can be seen that the two genetic algorithms (NSGA-II and SPEA2) obtained the best
hypervolumes. NSGA-II has a slightly faster convergence speed than SPEA2. In the last
ten generations, both of them saturate; they no longer find significantly better solutions.
SMPSO performs better than OMOPSO but, both PSO algorithms perform worse than
the genetic algorithms in terms of solution quality (we used the same hypervolume
reference point). However, they have the fastest convergence speed. Only after 8-9
generations the genetics recover and surpass the PSO algorithms.

We also compared the four algorithms using the coverage metric (results are
omitted due to space constraints). We concluded that SPEA2 has the best overall results.
The following figure shows the Pareto front obtained with SPEA2, by combining the
Pareto fronts from all ten telecom mappings.

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

43

Fig. 28 SPEA2 Pareto front, for telecom

We observe that the Pareto front contains solutions from all eight of the ten best telecom
mappings. We obtained the best energy consumption with the eight mapping. The
smallest area was given by mappings three and five. With exactly the same area, the third
mapping has a better energy, while the fifth has a better application runtime. Finally, the
lowest application runtime was found on a SoC design corresponding to mapping eight.
 It is interesting to see that we did not obtain the best energy with the first best
mapping, which analytically gave us the lowest NoC communication energy. This can be
due to several facts. Firstly, we analytically estimated only the NoC communication
energy. With this approach we compute the entire SoC energy (IP cores energy is also
included). Secondly, the analytical model is unable to capture the dynamic network
effects (network congestions). Thirdly, FADSE does not obviously perform an exhaustive
search. It is possible that we might get better energy results with mapping one than with
mapping eight. This shows the need to perform better exploration of the design space.
Using domain-knowledge to constrain the search space and applying fuzzy rules are two
approaches that could improve the DSE technique [70].
 Finally, we combined all the Pareto fronts obtained with all our algorithms, for all
ten telecom mappings.

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

44

Fig. 29 Combined Pareto front for telecom benchmark

It can be observed that all the solutions found with SMPSO and OMOPSO are dominated
by the solutions found with the genetic algorithms. While in terms of SoC area the best
solutions are the ones found with SPEA2 (with mappings 3 and 5), in terms of energy and
runtime, NSGA-II found, with mapping six, better results than SPEA2 (with mapping
eight).
 The following table summarizes the best SoC designs found for the telecom
application. Due to space constraints, we do not show the 30 IP cores selected for every
SoC architecture.

NoC parameters
Objective Algorithm Map

ping Frequency
[MHz]

Buffer
size

[flits]

Flit
size

[bytes]

Packet
size

[flits]

Routi
ng

SoC
energy
[Joule]

SoC
area

[mm2]

Applicati
on

runtime
[ms]

Energy NSGA-II 6 100 4 4 10 YX 0.09516 50.11 46.1144
Area SPEA2 5 200 1 4 10 XY 0.15818 37.37 46.1132
Area SPEA2 3 400 1 4 10 YX 0.16793 37.37 46.1111

Runtime NSGA-II 6 900 4 32 6 YX 0.34191 81.22 45.4

The lowest energy was obtained (in accordance with our intuition) when the NoC
operated at the lowest frequency allowed by our DSE workflow. The SoCs with the
smallest area use some of the smallest IP cores. Also, the NoC buffers are only one flit in
size. As compared with the best energy and runtime SoC designs, the two area designs
use only 25% NoC buffering resources. The two designs with the smallest area
essentially differ by the NoC frequency. The faster one uses a NoC that is twice faster.
The SoC with the best runtime runs telecom with more than half a millisecond than the

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

45

other three SoCs, which are differentiated in terms of speed by only a few fractions of a
microsecond. The best runtime SoC architecture also requires a much faster NoC. It also
operates with bigger packets. All these reflect on considerably higher energy and bigger
area. Finally, we also observe that routing also influences the architecture’s performance.
Our best SoC designs for telecom use both XY and YX routing protocols.

Now we continue with the MPEG-4 DSE. The following figure presents the
hypervolume of each DSE algorithm, for the best MPEG-4 mapping found analytically.

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Generation Count

H
yp

er
vo

lu
m

e

NSGA-II SPEA2 SMPSO OMOPSO

Fig. 30 Hypervolumes for the first best MPEG-4 mapping

The results obtained for telecom are consistent with the ones presented here. Again the
two genetic algorithms perform better than the particle swarm optimization algorithms.
NSGA-II converges faster than SPEA2. In terms of quality of results it seems that
NSGA-II is the best. Again, SMPSO performed better than OMOPSO. Like for telecom,
MPEG-4 results show us that it matters more the class the algorithm belongs to
(evolutionary or bio-inspired), rather than the specific implementation.

We computed the coverage, trying to choose the best algorithm from each class.
The results are presented in Fig. 31 and Fig. 32.

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

46

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

C
ov

er
ag

e

Coverage(NSGA-II,SPEA2) Coverage(SPEA2,NSGA-II)

Fig. 31 Coverage comparison between NSGA-II and SPEA2, for MPEG-4

For the first generations no clear distinction can be made between the two algorithms.
However, looking at the last generations, we conclude that there are more individuals
produced by SPEA2 that dominate the NSGA-II individuals. This contradicts the
hypervolume chart where NSGA-II seemed to perform better. We thoroughly analyzed
the Pareto fronts obtained by the two genetic algorithms. Some of the solutions
discovered by NSGA-II are better than the ones obtained by SPEA2 and some are worse
(in accordance with the coverage metric). It is hard to establish the best one because it
depends on the requirements of the designer. Still, the results obtained by NSGA-II
seemed a little more spread in the objective space.
 The same behavior can be observed between OMOPSO and SMPSO. SMPSO
performed better from the hypervolume point of view, but here OMOPSO is the best.
Again, we analyzed the Pareto fronts approximations and from our point of view SMPSO
had better results. We emphasize that this is a subjective appreciation and for other
designers the order might be changed.

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

47

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

C
ov

er
ag

e

Coverage(SMPSO,OMOPSO) Coverage(OMOPSO,SMPSO)

Fig. 32 Coverage comparison between SMPSO and OMOPSO, for MPEG-4

For our last comparison we selected the best algorithms from the coverage point of view:
SPEA2 and OMOPSO. In the next figure we present the coverage comparison between
the two algorithms. SPEA2 is clearly the best, by dominating almost 100% of the
individuals found by OMOSPO. OMOSPO does not dominate almost any individuals
obtained by the genetic algorithm. It is interesting to observe that OMOPSO is better for
the first generations. This is because of the faster convergence speed of the PSO
algorithms.

0%
20%
40%
60%
80%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

C
ov

er
ag

e

Coverage(SPEA2,OMOPSO) Coverage(OMOPSO,SPEA2)

Fig. 33 Coverage comparison between SPEA2 and OMOPSO, for MPEG-4

 The following figure presents the most spread Pareto front, which was obtained
by the NSGA-II algorithm. Through interpolation we also obtained a surface grid that
gives us a better view of the Pareto surface.

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

48

Fig. 34 MEPG-4 NSGA-II Pareto front

As expected, it can be observed that there is no SoC design for the MPEG-4 application
that is best for all three objectives. The fastest designs consume more energy and occupy
more area. The slowest architectures consume less energy and need less area. In between
we have a lot of solutions that are better for energy and worse for area and vice versa.

We conclude this preliminary research by presenting the hypervolumes obtained
for the first best analytical mapping of H.264 and VOPD benchmarks.

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

H
yp

er
vo

lu
m

e

NSGA-II SPEA2 SMPSO OMOPSO

Fig. 35 Hypervolumes for the first best H.264 mapping

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

49

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

H
yp

er
vo

lu
m

e

NSGA-II SPEA2 SMPSO OMOPSO

Fig. 36 Hypervolumes for the first best VOPD mapping

These H.264 and VOPD hypervolume results are in correlation with our previous results.
Our conclusion is that the genetic algorithms find better solutions than the particle swarm
optimization methods. The PSO algorithms manage to converge faster only for the H.264
decoder. For VOPD, SMPSO performs clearly better than OMOPSO. We also observe an
unsteady convergence speed for the PSOs. For a large number of generations their
evolution is insignificant. Then, they manage to find at least one significantly better
individual, which makes their hypervolume grow noticeable.

50

9 Conclusions and Further Work

This work addresses the Network-on-Chip application mapping problem. After we
introduced the novel Network-on-Chip paradigm in Chapter 0, we focused on the
mapping problem. Chapter 3 presents the problem along with a state of the art on the
heuristic algorithms used to address it. In Chapter 4 we show our developed unified
framework for the evaluation and optimization of Network-on-Chip application mapping
algorithms. In Chapter 5 we presented the benchmarks used in our research, in this
emerging NoC research field that still lacks a standard benchmarking methodology. With
UniMap, we evaluated and optimized a simulated annealing algorithm using a domain-
knowledge approach (Chapter 6). We also evaluated and optimized evolutionary
algorithms by proposing problem aware genetic operators (Chapter 7). Finally, in Chapter
 8, we proposed and used a design space exploration workflow for an application driven
automatic design space exploration for Systems-on-Chip. Our algorithms’ evaluations
were performed using both analytical models and simulators. We considered single and
multi-objective approaches.
More precisely, this thesis makes the following contributions:

� An introduction to Network-on-Chip architectures with an emphasis on the most
common network topologies and routing protocols used in this research field;

� Taxonomy for the classification of Network-on-Chip application mapping
algorithms;

� State of the art regarding algorithms for Network-on-Chip application mapping;
� UniMap: a developed unified framework for the evaluation and optimization of

NoC application mapping algorithms;
� UniMap runs on High Performance Computing Systems using job schedulers to

automatically and optimally distribute simulations;
� Common model based on XML schemas for representing real applications and

networks;
� UniMap integrates state of the art NoC application mapping algorithms like

Simulated Annealing and Branch and Bound;
� UniMap integrates jMetal, a library with single objective and multi-objective state

of the art evolutionary algorithms, which can be used as application mapping
algorithms;

� ns-3 NoC, our developed Network-on-Chip simulator, with two router
architectures, three routing protocols, three switching mechanisms and k-ary d-
cube topologies;

� Network traffic generator based on communication patterns of real applications,
described through Communication Task Graphs and Application Characterization
Graphs;

� ns-3 NoC integrates ORION 2.0, a state of the art tool for Network-on-Chip
power consumption and area estimation;

� Using ns-3 NoC, we showed that the Irvine architecture helps at decreasing the
network congestion. The network is significantly less congested when data flits
are transmitted faster than head flits;

Conclusions and Further Work

51

� With ns-3 NoC, we showed how increasing the network buffers’ size improves
the NoC’s average packet latency;

� Using ns-3 NoC, we evaluated different network topologies: 2D mesh, 2D torus,
3D mesh, 3D torus and hypercube. We concluded that topologies like tori and
hypercube can give better NoC performance than meshes can;

� UniMap integrates the E3S benchmark suite and some of the most used CTGs and
APCGs available in literature. Because NoC benchmarking is still work in
progress, we effectively created our own benchmark suite;

� We propose and use for Network-on-Chip benchmarking two communication
patterns taken from a H.264 decoder system available in the research community;

� Using domain-knowledge, we developed an Optimized Simulated Annealing
(OSA) algorithm. It performs a dynamic and implicit core clustering and limits
the number of iterations per annealing temperature based on the given application
and network.

� We showed that Simulated Annealing can be feasible for NoC application
mapping when domain-knowledge is used. OSA is approximately 99% faster than
a generic Simulated Annealing algorithm, without losing the solution quality;

� The results obtained with OSA showed that Simulated Annealing is feasible for
NoC 2D meshes larger than 10x10. Previous research stated the contrary;

� OSA is comparable to Branch and Bound in terms of memory consumption and
speed. It mapped 97 cores on a 10x10 2D mesh in a time slower by only 3% than
the time required by Branch and Bound;

� As the problem size increases, OSA gives significantly better solutions than
Branch and Bound. The mappings found with Branch and Bound were with more
than 70% worse than OSA’s mappings when working with more than 64 IP cores;

� We showed Branch and Bound’s limitations. This algorithm was unable to map
an application with 215 cores, onto a 15x15 NoC, because more than 98% of the
search space was pruned;

� We developed an Elitist energy- and performance-aware Genetic Algorithm
(EGA). EGA is integrated in jMetal;

� We extended jMetal with the Position Based crossover;
� We evaluated EGA and an Elitist Evolutionary Strategy (EES) using different

genetic operators (four crossovers, two mutations => 12 algorithm variants);
� We concluded that evolutionary algorithms are superior to algorithms like OSA,

for NoCs with tens, hundreds of nodes. We found that, for the big benchmarks, all
the best solutions were given by evolutionary algorithms (none by OSA);

� We proposed a meta-heuristic algorithm consisting of an evolutionary algorithm
that uses as mutation operator a state of the art application mapping algorithm;

� EGA and EES work better with OSA mutation than with swap mutation. OSA
integrated successfully into the Evolutionary Algorithms;

� We designed two problem specific crossover operators: NoC Position Based and
Mapping Similarity. NoC Position Based crossover improves the standard
Position Based crossover for our problem. Mapping Similarity crossover
exchanges information between the parent individuals. It does not simply work as
a mutation operator, like the other state of the art NoC application mapping
crossover operators do;

Conclusions and Further Work

52

� With NoC Position Based crossover, EGA had the best solution percentage on the
big benchmarks;

� We found Mapping Similarity to be the crossover operator that contributes the
most at obtaining a good mapping. It performed best at 50% - 60% mutation
probability. The rest of crossovers required higher mutation rates;

� We found EES to perform better than EGA. Although we managed to improve the
genetic algorithm through our crossover operators, using an algorithm that works
only with (context-aware) mutation proved to be better. Finding a suitable
context-aware crossover for NoC application mapping is more difficult than
finding an efficient context-aware mutation;

� EES with OSA mutation was the algorithm that managed to converge the fastest;
� Using two state of the art multi-objective algorithms (NSGA-II and SPEA2) with

our genetic operators, we evaluated (with analytic models) the mappings in terms
of NoC communication energy and NoC thermal balance. The two objectives are
contradictory and, as such, our developed operators did not lead to the best
performance. However, we did find the best solutions, in terms of energy, with
OSA mutation. A suitable crossover operator for the NoC application mapping
problem is even more difficult to find if we consider multi-objective optimization;

� UniMap connects with the Framework for Automatic Design Space Exploration;
� We proposed an application driven automatic Design Space Exploration

technique for System-on-Chip architectures. The goal is that, for a given
application, to automatically determine the best System-on-Chip design, with the
following objectives: SoC energy, SoC area and application runtime;

� Using our developed ns-3 NoC simulator and FADSE, we explored the NoC
architectural space for different real applications;

� We showed that the best analytical mappings are not necessarily the best ones
when using a NoC simulator;

� The genetic algorithms (NSGA-II and SPEA2) were clearly more suited for our
design space exploration workflow than the particle swam optimization methods
(SMPSO and OMOPSO). Still, the PSO algorithms converged faster.

As future work, we intend to improve UniMap. We are interested in extracting
communication patterns from parallel applications. The first step will be to integrate
CETA tool. This will allow us to obtain Communication Task Graphs from shared
memory parallel programs. The second step will be to similarly use an MPI library that
allows intercepting the communications from message passing parallel applications.

 Another direction for extending our unified framework is to implement other state
of the art Network-on-Chip application mapping algorithms. For example, the
comparisons between OSA and Cluster Simulated Annealing [57] runtimes are very
likely to be unfair. This can be due to several reasons: (1) OSA is written in Java but, we
do not know yet how CSA is implemented, (2) OSA is energy aware and uses the cost
function from [25], while CSA is bandwidth and latency constrained, using the cost
function from [76] and (3) CSA does not specify the number of generations per
temperature level.

Also, we consider further improving our developed NoC simulator. Improving the
router architecture with virtual channels and allocators is an example. This will bring our

Conclusions and Further Work

53

router implementation closer to real router designs.
Regarding our developed crossover operators (see Section 7.3) they are suitable

only for the communication energy objective. They must be adapted to work in a multi-
objective case. Even OSA mutation was designed only for energy minimization.
Therefore, evaluation and optimization of such algorithms, in a multi-objective context
will be more difficult. Using standard crossover and mutation operators simplifies the
problem a lot but, such operators are not aware of the problem.

We also plan to continue our research regarding application driven automatic
design space exploration for System-on-Chip architectures (see Chapter 8). The presented
results are still preliminary. We intend doing more simulations so that we identify the
best SoC designs for applications other than telecom, too. We also intend to do a more
accurate modeling of our SoC designs by increasing the accuracy with which we simulate
the IP cores and by varying the NoC topology as well. As for the design space explorer,
we intend to use more domain-knowledge so that we can constrain and better explore the
huge architectural space. We believe our approach can be extended for performing
automatic design space exploration for High Performance Computing systems.
Finally, we refer to a research niche that we identified during this PhD thesis but,
unfortunately we have not had enough time to exploit it, yet. We believe that Network-
on-Chip application mapping problem can be addressed using graph theory. More
precisely, we refer to graph isomorphism, which is the problem of verifying if two
graphs are actually the same. Two graphs A = (VA, EA) and N = (VN, EN) are isomorphic if
and only if there is a bijective mapping NA VVM →: , between the graph nodes, such that

the following equivalence is true: NAA EeMeMEeeVee ∈⇔∈∈∀))(),((),(:, 212121 .

This means a unique mapping between the corresponding edges of the two graphs is
required. For weighted graphs, the condition can be extended to include the weights as
well. Subgraph isomorphism requires the mapping M to be only injective. Graph
monomorphism is a weaker type of subgraph isomorphism. The equivalence relation
must be just an implication (NAA EeMeMEeeVee ∈⇒∈∈∀))(),((),(:, 212121).

Considering the above definitions and that the two graphs (A and N) are an Application
Characterization Graph (APCG) and, respectively, a NoC topology graph, the Network-
on-Chip application mapping problem can be viewed as a graph monomorphism problem.
Indeed, it is mentioned in [77] that the quadratic assignment problem can be formulated
as a graph monomorphism problem. Currently, there is no known polynomial-time
algorithm for the monomorphism problem [78]. However, special graph types, like planar
graphs, can theoretically be solved in a linear time [79]. Using the Boyer-Myrvold
algorithm [80], we tested for planarity all the APCGs used in this work. All of them
proved to be planar graphs. We also integrated in UniMap the VF2 [81] graph matching
algorithm and used it to determine if an isomorphism exists between any APCG and its
corresponding NoC topology graph. We found none but, this is understandable because
we should search for monomorphisms, not for isomorphisms. We found little NoC
research using this idea. Graph isomorphism is used in [82] to identify the isomorphically
unique NoC topology graphs. VF2 algorithm is used in [83] to perform subgraph
isomorphism in order to decompose an APCG into a set of predefined communication
pattern graphs. We believe approaching the NoC application mapping problem as a graph
monomorphism problem is worth researching.

54

10 Selected References

[1] M. Duranton et al., “The HiPEAC Vision,” HiPEAC Roadmap, 2010. [Online].

Available: http://www.hipeac.net/system/files/LR_3910_hipeac_roadmap-2010-
v3.pdf.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, 4th Edition, 4th ed. Morgan Kaufmann, 2006.

[3] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote, “Outstanding
research problems in NoC design: system, microarchitecture, and circuit
perspectives,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 28, no. 1, pp. 3-21,
2009.

[4] G. Moore, “Cramming More Components onto Integrated Circuits,” Electronics,
vol. 38, no. 8, pp. 114-117, Apr. 1965.

[5] G. E. Moore, “Excerpts from a conversation with Gordon Moore: Moore’s Law,
2005,” URL ftp://download. intel. com/museum/Moores_Law/Video-
Transcripts/Excepts_A_Conversation_with_Gordon_Moore. pdf.

[6] L. Vinţan N., Arhitecturi de procesoare cu paralelism la nivelul instrucțiunilor.
Editura Academiei Române, Bucureşti, 2000.

[7] L. Vinţan N., Prediction Techniques in Advanced Computing Architectures. Matrix
Rom Publishing House, Bucharest, 2007.

[8] A. Florea and L. Vinţan N., Simularea şi optimizarea arhitecturilor de calcul în
aplicaţii practice. Editura Matrix Rom, Bucureşti, 2003.

[9] L. Vinţan N., “Direcţii de cercetare în domeniul sistemelor multicore,” Revista
Română de Informatică și Automatică, ICI București, vol. 19, no. 3, 2009.

[10] C. Radu, H. Calborean, A. Crapciu, A. Gellert, and A. Florea, “An Interactive
Graphical Trace-Driven Simulator for Teaching Branch Prediction in Computer
Architecture,” in The 6th EUROSIM Congress on Modeling and Simulation, 2007,
p. 58.

[11] A. Florea, C. Radu, H. Calborean, A. Crapciu, A. Gellert, and L. Vintan,
“Designing an Advanced Simulator for Unbiased Branches Prediction,”
Proceedings of 9th International Symposium on Automatic Control and Computer
Science, 2007.

[12] A. Florea, C. Radu, H. Calborean, A. Crapciu, A. Gellert, and L. Vinţan,
“Understanding and Predicting Unbiased Branches in General-Purpose
Applications,” Buletinul Institutului Politehnic Iasi, Tome LIII (LVII), fasc. 1-4,
Section IV, Automation Control and Computer Science Section, pp. 97-112, 2007.

[13] C. Radu, “Implementing a multicore Shared Memory Architecture using
Transaction Level Modelling with UNISIM,” Diploma project (Bachelor), “Lucian
Blaga” University of Sibiu, Romania (in Romanian, supervisor Professor Lucian
Vintan, PhD), Sibiu, Romania, 2008.

[14] C. Radu, H. Calborean, A. Florea, A. Gellert, and L. Vintan, “Exploring Some
Multicore Research Opportunities. A First Attempt.,” in Advanced Computer
Architecture and Compilation for Embedded Systems, Terrassa (Barcelona), Spain,
2009.

Selected References

55

[15] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of Network-
on-chip,” ACM Comput. Surv., vol. 38, no. 1, Jun. 2006.

[16] K. Asanovic et al., “The landscape of parallel computing research: A view from
berkeley,” Citeseer, 2006.

[17] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched
interconnections,” Proceedings of the conference on Design, automation and test in
Europe, pp. 250–256, 2000.

[18] A. Hemani et al., “Network on chip: An architecture for billion transistor era,” in
Proceeding of the IEEE NorChip Conference, 2000, pp. 166–173.

[19] W. J. Dally and B. Towles, “Route packets, not wires: on-chip inteconnection
networks,” in Proceedings of the 38th annual Design Automation Conference, Las
Vegas, Nevada, United States, 2001, pp. 684-689.

[20] D. Wingard, “Micronetwork-based integration for SOCs: 673,” Proceedings of the
38th annual Design Automation Conference, p. 677–, 2001.

[21] E. Rijpkema, K. Goossens, and P. Wielage, “A Router Architecture for Networks
on Silicon,” IN PROCEEDINGS OF PROGRESS 2001, 2ND WORKSHOP ON
EMBEDDED SYSTEMS, p. 181--188, 2001.

[22] S. Kumar et al., “A network on chip architecture and design methodology,” in
isvlsi, 2002, p. 0117.

[23] G. de Micheli and L. Benini, “Networks on Chip: A New Paradigm for Systems on
Chip Design,” Proceedings of the conference on Design, automation and test in
Europe, p. 418–, 2002.

[24] M. Duranton et al., “The HiPEAC Vision,” HiPEAC Roadmap, 2010. [Online].
Available: http://www.hipeac.net/system/files/LR_3910_hipeac_roadmap-2010-
v3.pdf.

[25] J. Hu and R. Marculescu, “Energy-aware mapping for tile-based NoC architectures
under performance constraints,” in Proceedings of the 2003 Asia and South Pacific
Design Automation Conference, Kitakyushu, Japan, 2003, pp. 233-239.

[26] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-completeness. WH Freeman & Co. New York, NY, USA, 1979.

[27] I. Walter, I. Cidon, A. Kolodny, and D. Sigalov, “The era of many-modules SoC:
revisiting the NoC mapping problem,” in 2nd International Workshop on Network
on Chip Architectures, 2009. NoCArc 2009, 2009, pp. 43-48.

[28] U. Y. Ogras, J. Hu, and R. Marculescu, “Key research problems in NoC design: a
holistic perspective,” in Proceedings of the 3rd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, Jersey City, NJ,
USA, 2005, pp. 69-74.

[29] R. P. Dick and N. K. Jha, “MOCSYN: multiobjective core-based single-chip
system synthesis,” in Proceedings of the conference on Design, automation and test
in Europe, Munich, Germany, 1999, p. 55.

[30] C. Grecu et al., “Towards Open Network-on-Chip Benchmarks,” in Proceedings of
the First International Symposium on Networks-on-Chip, Princeton, NJ, 2007, p.
205.

[31] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,” in
Proceedings of the 6th international workshop on Hardware/software codesign,
Seattle, Washington, United States, 1998, pp. 97-101.

Selected References

56

[32] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed
task graphs to multiprocessors,” ACM Computing Surveys (CSUR), vol. 31, pp.
406–471, Dec. 1999.

[33] D. Towsley, “Allocating programs containing branches and loops within a multiple
processor system,” IEEE Transactions on Software Engineering, vol. 12, pp. 1018–
1024, Oct. 1986.

[34] H. El-Rewini and H. H. Ali, “Static scheduling of conditional branches in parallel
programs,” Journal of Parallel and Distributed Computing, vol. 24, pp. 41–54, Jan.
1995.

[35] A.-H. Liu and R. P. Dick, “Automatic run-time extraction of communication graphs
from multithreaded applications,” in Proceedings of the 4th international
conference on Hardware/software codesign and system synthesis, Seoul, Korea,
2006, pp. 46-51.

[36] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 1st ed.
Prentice Hall, 1995.

[37] J. Hu and R. Marculescu, “Energy- and performance-aware mapping for regular
NoC architectures,” IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS, vol. 24, no. 4, p. 551--562, 2005.

[38] J. Hu and R. Marculescu, “Communication and task scheduling of application-
specific networks-on-chip,” IEE Proceedings - Computers and Digital Techniques,
vol. 152, no. 5, p. 643, 2005.

[39] R. Pop and S. Kumar, “A survey of techniques for mapping and scheduling
applications to network on chip systems,” School of Engineering, Jonkoping
University, Research Report, vol. 4, p. 4, 2004.

[40] C. Radu and L. Vinţan, “UNIMAP: UNIFIED FRAMEWORK FOR NETWORK-
ON-CHIP APPLICATION MAPPING RESEARCH,” Acta Universitatis
Cibiniensis Technical Series, May 2011.

[41] C. Radu and L. Vinţan, “Towards a Unified Framework for the Evaluation and
Optimization of NoC Application Mapping Algorithms,” in ACACES 2010 Poster
Abstracts, Terrassa (Barcelona), Spain, 2010, pp. 163 - 166.

[42] C. Radu, “Unified Framework for Network-on-Chip Application Mapping,”
unimap - Project Hosting on Google Code. [Online]. Available:
https://code.google.com/p/unimap/. [Accessed: 04-Feb-2011].

[43] “ULBS HPC cluster.” [Online]. Available: http://zamolxe.hpc.ulbsibiu.ro/.
[Accessed: 07-Feb-2011].

[44] “The Embedded System Synthesis Benchmarks Suite (E3S) website.” [Online].
Available: http://ziyang.eecs.umich.edu/~dickrp/e3s/.

[45] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: a fast and accurate
NoC power and area model for early-stage design space exploration,” in
Proceedings of the Conference on Design, Automation and Test in Europe, 3001
Leuven, Belgium, Belgium, 2009, pp. 423–428.

[46] C. Radu and L. Vinţan, “Optimizing Application Mapping Algorithms for NoCs
through a Unified Framework,” in Roedunet International Conference (RoEduNet),
2010 9th, Sibiu, Romania, 2010, pp. 259 - 264.

Selected References

57

[47] S. E. Lee and N. Bagherzadeh, “Increasing the throughput of an adaptive router in
network-on-chip (NoC),” in Proceedings of the 4th international conference on
Hardware/software codesign and system synthesis, Seoul, Korea, 2006, pp. 82-87.

[48] S. Schlingmann, “Selbstoptimierendes Routing in einem Network-on-a-Chip,”
Augsburg, Germany, 2007.

[49] A. Gancea, “Simulator pentru proiectarea, evaluarea și optimizarea unor rețele de
interconectare tip NoC,” Diploma project (Bachelor), “Lucian Blaga” University of
Sibiu, Romania (in Romanian, supervisor Professor Lucian Vintan, PhD), Sibiu,
Romania, 2011.

[50] E. Salminen, K. Srinivasan, and Z. Lu, “OCP-IP Network-on-chip benchmarking
workgroup,” OCP-IP, Dec-2010. [Online]. Available:
http://www.ocpip.org/uploads/dynamic_areas/Cv8XdaKTKDztFpWKPqsl/6189/No
C%20Working%20Group%20Overview%20WP.pdf.

[51] E. B. van der Tol, “Mapping of H.264 decoding on a multiprocessor architecture,”
in Proceedings of SPIE, Santa Clara, CA, USA, 2003, pp. 707-718.

[52] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by Simulated Annealing,”
Science, vol. 220, no. 4598, pp. 671-680, May 1983.

[53] M. A. . Elmohamed, P. Coddington, and G. Fox, “A comparison of annealing
techniques for academic course scheduling,” Practice and Theory of Automated
Timetabling II, p. 92, 1998.

[54] C. Radu and L. Vinţan, “Optimized Simulated Annealing for Network-on-Chip
Application Mapping,” in Proceedings of the 18th International Conference on
Control Systems and Computer Science (CSCS-18), Bucharest, Romania, 2011, vol.
1, pp. 452–459.

[55] SLD:: System Level Design Group @ CMU, “NoCmap: an energy- and
performance-aware mapping tool for Networks-on-Chip,” SLD:: System Level
Design Group @ CMU, 2010. [Online]. Available:
http://www.ece.cmu.edu/~sld/wiki/doku.php?id=shared:nocmap.

[56] H. Orsila, E. Salminen, and T. D. Hämäläinen, “Best Practices for Simulated
Annealing in Multiprocessor Task Distribution Problems,” in Simulated Annealing,
I-Tech Education and Publishing KG, 2008, pp. 321-342.

[57] Z. Lu, L. Xia, and A. Jantsch, “Cluster-based Simulated Annealing for Mapping
Cores onto 2D Mesh Networks on Chip,” in Proceedings of the 2008 11th IEEE
Workshop on Design and Diagnostics of Electronic Circuits and Systems,
Washington, DC, USA, 2008, pp. 1–6.

[58] C. Radu, “Optimized Simulated Annealing for Network-on-Chip Application
Mapping,” Computer Science Department, “Lucian Blaga” University of Sibiu, PhD
Technical Report no. 3, Jun. 2011.

[59] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Springer,
2008.

[60] C. A. C. Coello, D. A. V. Veldhuizen, and G. B. Lamont, Evolutionary Algorithms
for Solving Multi-Objective Problems, 1st ed. Springer, 2002.

[61] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, 1st ed. Addison-Wesley Professional, 1989.

[62] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” J. ACM, vol. 41,
no. 5, pp. 874-902, 1994.

Selected References

58

[63] Ge-Ming Chiu, “The odd-even turn model for adaptive routing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 11, no. 7, pp. 729-738, Jul.
2000.

[64] G. Ascia, V. Catania, and M. Palesi, “Multi-objective mapping for mesh-based
NoC architectures,” in Proceedings of the 2nd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, Stockholm,
Sweden, 2004, pp. 182-187.

[65] G. Syswerda, “A Study of Reproduction in Generational and Steady State Genetic
Algorithms,” in Foundations of Genetic Algorithms, 1990, pp. 94–101.

[66] D. E. Goldberg and R. Lingle, “Alleles, Loci, and the Traveling Salesman
Problem,” in Proc.\ of the International Conference on Genetic Algorithms and
Their Applications, Pittsburgh, PA, 1985, pp. 154-159.

[67] G. Ascia, V. Catania, and M. Palesi, “A Multi-Objective Genetic Approach to
Mapping Problem on Network-on-Chip,” JUCS, vol. 22, p. 2006.

[68] G. Ascia, V. Catania, and M. Palesi, “Mapping cores on network-on-chip,”
International Journal of Computational Intelligence Research, vol. 1, no. 1-2, pp.
109–126, 2005.

[69] C. Radu, “Evolutionary Algorithms for Network-on-Chip Application Mapping,”
Computer Science Department, “Lucian Blaga” University of Sibiu, PhD Technical
Report no. 4, Jun. 2011.

[70] H. Calborean, “Multi-Objective Optimization of Advanced Computer Architectures
using Domain-Knowledge,” PhD Thesis, “Lucian Blaga” University of Sibiu,
Romania, 2011 (PhD Supervisor: Prof. Lucian Vintan, PhD), Sibiu, Romania, 2011.

[71] H. Calborean and L. Vintan, “An Automatic Design Space Exploration Framework
for Multicore Architecture Optimizations,” in Proceedings of The 9-th IEEE
RoEduNet International Conference, Sibiu, Romania, 2010, pp. 202-207.

[72] H. Calborean and L. Vinţan, “Framework for Automatic Design Space Exploration
of Computer Systems,” Acta Universitatis Cibiniensis Technical Series, May 2011.

[73] J. J. Durillo, A. J. Nebro, and E. Alba, “The jMetal Framework for Multi-Objective
Optimization: Design and Architecture,” in CEC 2010, Barcelona, Spain, 2010, pp.
4138-4325.

[74] R. Jahr, T. Ungerer, H. Calborean, and L. Vintan, “Automatic Multi-Objective
Optimization of Parameters for Hardware and Code Optimizations,” in Proceedings
of the 2011 International Conference on High Performance Computing &
Simulation (HPCS 2011), 2011, pp. 308 – 316.

[75] H. Calborean, R. Jahr, T. Ungerer, and L. Vintan, “Optimizing a Superscalar
System using Multi-objective Design Space Exploration,” in Proceedings of the
18th International Conference on Control Systems and Computer Science (CSCS),
Bucharest, Romania, Calea Grivitei, nr. 132, 78122, Sector 1, Bucuresti, 2011, vol.
1, pp. 339–346.

[76] S. Murali and G. D. Micheli, “Bandwidth-Constrained Mapping of Cores onto NoC
Architectures,” in Proceedings of the Conference on Design, Automation and Test
in Europe - Volume 2, 2004, p. 20896.

[77] D. E. Ghahraman, A. K. C. Wong, and T. Au, “Graph Optimal Monomorphism
Algorithms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 10, pp.
181-188, 1980.

Selected References

59

[78] “Graph Monomorphism Algorithms,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 10, pp. 189-196, 1980.

[79] G. S. Lueker and K. S. Booth, “A Linear Time Algorithm for Deciding Interval
Graph Isomorphism,” Journal of the ACM, vol. 26, pp. 183-195, Apr. 1979.

[80] “On the Cutting Edge: Simplified O(n) Planarity by Edge Addition.” [Online].
Available: http://academic.research.microsoft.com/Publication/1734993. [Accessed:
07-Sep-2011].

[81] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “Performance evaluation of
the VF graph matching algorithm,” pp. 1172-1177.

[82] N. K. Bambha and S. S. Bhattacharyya, “Joint application mapping/interconnect
synthesis techniques for embedded chip-scale multiprocessors,” IEEE Transactions
on Parallel and Distributed Systems, vol. 16, pp. 99-112, Feb. 2005.

[83] U. Y. Ogras and R. Marculescu, “Energy- and Performance-Driven NoC
Communication Architecture Synthesis Using a Decomposition Approach,” pp.
352-357.

