

Universitatea

Lucian Blaga

Sibiu

Investeşte în oameni!

PROIECT FINANŢAT DIN FONDUL SOCIAL EUROPEAN

ID proiect: 7706

Titlul proiectului: „Creşterea rolului studiilor doctorale şi a competitivităţii doctoranzilor într-o Europă unită”

Universitatea”Lucian Blaga” din Sibiu

 B-dul Victoriei, nr. 10. Sibiu

 Facultatea de Inginerie “Hermann Oberth”

 Domeniul de doctorat: Calculatoare şi Tehnologia Informaţiei

Multi-Objective Optimization of

Advanced Computer Architectures

using Domain-Knowledge

PhD Thesis

Author:

Horia Andrei Calborean, M.Sc.

PhD Supervisor:

Professor Lucian Vinţan, PhD

SIBIU, September 2011

Universitatea

Lucian Blaga

Sibiu

Investeşte în oameni!

PROIECT FINANŢAT DIN FONDUL SOCIAL EUROPEAN

ID proiect: 7706

Titlul proiectului: „Creşterea rolului studiilor doctorale şi a competitivităţii doctoranzilor într-o Europă unită”

Universitatea”Lucian Blaga” din Sibiu

 B-dul Victoriei, nr. 10. Sibiu

 Facultatea de Inginerie “Hermann Oberth”

 Domeniul de doctorat: Calculatoare şi Tehnologia Informaţiei

Optimizarea multi-obiectiv a unor

arhitecturi avansate de calcul

utilizând cunoştinţe de domeniu

Teză de doctorat

Autor:

Ing. Horia Andrei Calborean

Conducător ştiinţific:

Prof. univ. dr. ing. Lucian Vinţan

SIBIU, Septembrie 2011

Acknowledgements

First, I would like to express my gratitude to Professor Lucian Vinţan, who is the
coordinator of this PhD Thesis. I appreciate the trust he placed in me by offering me
the opportunity to work on this research project. A sincere thank you to him for being
there throughout this adventure and helping me successfully complete this Thesis. I
truly appreciate his useful comments and guidance.

I would also like to thank Professor Theo Ungerer from the University of Augsburg
for the training period I spent with his research group and also for the successful
collaboration that followed. I want to especially thank Ralf Jahr, with whom I have
cooperated and who has become a close friend to me.

I want to express my gratitude to my friend and colleague Ciprian Radu for his useful
advice and for supporting me throughout this period.

Special thanks to the teachers from the Computer Science Department of “Lucian
Blaga” University of Sibiu, especially to Associate Professor Dr. Ing. Remus Brad
who reviewed part of my work during this PhD period.

I would also like to thank Associate Professor Dr. Ing. Adrian Florea and Assistant
Professor Dr. Ing. Árpád Gellért for their support, constructive comments and the
good collaboration we had together throughout the years, even before I started my
PhD.

Many thanks to the team lead by Professor Nicolae Ţăpuş for granting me access to
the HPC system from Politehinca University from Bucharest. I want to mention
Associate Professor Dr. Ing. Emil Slusanschi and Assistant Professor Alexandru
Herişanu for the help and assistance they offered.

For this research I have collaborated with very good students from "Lucian Blaga"
University of Sibiu: Andrei Zorila, Camil Banciou and Radu Chis. I would like to
thank them for their help.

I would also like to thank to some people very dear to me: my wife, Angela, and my
parents for being there for me when I needed them.

This work was supported by POSDRU financing contract POSDRU 7706.

Contents

AUTHOR’S PAPERS .. I

PUBLISHED PAPERS ... I
SUBMITTED PAPERS.. II
WORKSHOPS... II
TECHNICAL REPORTS ... II

1 INTRODUCTION...1

2 DESIGN SPACE EXPLORATION ALGORITHMS..2

2.1 MULTI-OBJECTIVE SEARCH ALGORITHMS ...2
2.2 MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION ..4
2.3 HANDLING CONSTRAINTS ..4
2.4 MEASURING MULTI-OBJECTIVE ALGORITHMS PERFORMANCE...5

3 DEVELOPING FADSE: A FRAMEWORK FOR AUTOMATIC DESIGN SPACE

EXPLORATION ..6

3.1 ACCELERATING DSE THROUGH DISTRIBUTED EVALUATION ...6
3.2 ACCELERATING DSE THROUGH RESULTS REUSE...8
3.3 UNIVERSAL INTERFACE – CONNECTORS ..8
3.4 EXTENSIBLE INPUT XML INTERFACE...8

4 IMPROVING FADSE WITH DOMAIN-SPECIFIC KNOWLEDGE9

4.1 DESIGN SPACE CONSTRAINTS ..9
4.2 HIERARCHICAL PARAMETERS ..9
4.3 INTRODUCING DOMAIN-SPECIFIC KNOWLEDGE THROUGH FUZZY LOGIC.............................10

5 MULTI-OBJECTIVE HARDWARE-SOFTWARE OPTIMIZATION OF THE GRID ALU

PROCESSOR..13

5.1 GAP AND GAPTIMIZE OVERVIEW ...13
5.2 AUTOMATIC DSE ON THE HARDWARE PARAMETERS...14
5.3 AUTOMATIC DSE ON THE HARDWARE AND COMPILER PARAMETERS..................................17
5.4 COMPARISON BETWEEN DSE ALGORITHMS ...19
5.5 AUTOMATICALLY GENERATED RULES FROM PREVIOUS EXPLORATION26
5.6 RUNNING WITH HIERARCHICAL PARAMETERS ...29

6 MULTI-OBJECTIVE OPTIMIZATION OF THE MONO-CORES AND MULTI-CORES

ARCHITECTURES ...31

6.1 M-SIM SIMULATOR OVERVIEW...31
6.2 OPTIMIZING M-SIM 2 ARCHITECTURE...32
6.3 OPTIMIZING M-SIM3 ARCHITECTURE ...40
6.4 MULTI-CORE SIMULATORS CONSIDERED FOR OPTIMIZATION ..43

7 MULTI-OBJECTIVE OPTIMIZATION OF SYSTEM ON CHIP ARCHITECTURES....46

7.1 UNIMAP OVERVIEW...46
7.2 DESIGN SPACE EXPLORATION WORKFLOW..47
7.3 METHODOLOGY ...49
7.4 RESULTS ..50
7.5 IMPROVING THE MANJAC MANY-CORE SYSTEM..57

8 CONCLUSIONS AND FURTHER WORK ...58

9 REFERENCES..62

i

Author’s Papers

Published Papers

Ralf Jahr, Theo Ungerer, Horia Calborean, Lucian Vinţan “Automatic Multi-
Objective Optimization of Parameters for Hardware and Code Optimizations”, The
2011 International Conference on High Performance Computing & Simulation(HPCS
2011), 4 – 8 July, 2011, Istanbul, Turkey. Selected for Outstanding paper award.
Received special invitation to publish an extended version in journal: “Concurrency

and Computation: Practice and Experience” Wiley – impact factor 0.907. Indexed
IEEE

Horia Calborean, Lucian Vinţan “Framework for Automatic Design Space
Exploration of Computer Systems”, Acta Universitatis Cibiniensis – Technical Series,
"Lucian Blaga" University of Sibiu, Romania, ISSN 1583-7149, May 2011, Sibiu,
Romania

Horia Calborean, Ralf Jahr, Theo Ungerer, Lucian Vinţan “Optimizing a
Superscalar System using Multi-objective Design Space Exploration”, 18th
International Conference on Control Systems and Computer Science (CSCS 18),
IEEE Romanian Chapter, 24 - 27 May, 2011, Bucharest, Romania. Selected to be

published by Elsevier.

Horia Calborean, Lucian Vinţan “Toward an efficient automatic design space
exploration frame for multicore optimization”, Sixth International Summer School on
Advanced Computer Architecture and Compilation for Embedded Systems
(ACACES), July 2010, Terrassa (Barcelona), Spain.

Horia Calborean, Lucian Vinţan “An automatic design space exploration framework
for multicore architecture optimizations”, In Proceedings of the 9-th IEEE RoEduNet
International Conference, Sibiu, Romania, June 2010. Best paper award. Indexed ISI
Thomson Reuters Proceedings, IEEE, SCOPUS

Ciprian Radu, Horia Calborean, Adrian Florea, Árpád Gellért, Lucian Vinţan
“Exploring some multicore research opportunities. A first attempt”, Fifth
International Summer School on Advanced Computer Architecture and Compilation
for Embedded Systems (ACACES), Academic Press, Ghent, Belgium, pp. 151-154,
ISBN 978 90 382 1467 2, July 2009, Terrassa (Barcelona), Spain.

Adrian Florea, Ciprian Radu, Horia Calborean, Adrian Crapciu, Árpád Gellért,
Lucian Vinţan “Understanding and Predicting Unbiased Branches in General-
Purpose Applications”, Buletinul Institutului Politehnic Iasi, Tome LIII (LVII), fasc.
1-4, Section IV, Automation Control and Computer Science Section, Zentralblatt
MATH indexed, pp. 97-112, ISSN 1220-2169, "Gh. Asachi" Technical University
2007, Iasi, Romania, Indexed Zentralblatt MATH.

ii

Adrian Florea, Ciprian Radu, Horia Calborean, Adrian Crapciu, Árpád Gellért,
Lucian Vinţan “Designing an Advanced Simulator for Unbiased Branches’
Prediction”,
Proceedings of 9th International Symposium on Automatic Control and Computer
Science, ISSN 1843-665X, November 2007, Iasi, Romania.

Ciprian Radu, Horia Calborean, Adrian Crapciu, Árpád Gellért, Adrian Florea “An
Interactive Graphical Trace-Driven Simulator for Teaching Branch Prediction in
Computer Architecture”, The 6th EUROSIM Congress on Modeling and Simulation,
(EUROSIM 2007), ISBN 978-3-901608-32-2, 9-13 September 2007, Ljubljana,
Slovenia (special session: Education in Simulation / Simulation in Education I).

Submitted Papers

Ralf Jahr, Horia Calborean, Theo Ungerer, Lucian Vinţan, “Boosting Design Space
Explorations with Existing or Automatically Learned Knowledge,” The 16-th
International GI/ITG Conference on Measurement, Modeling and Evaluation of
Computing Systems and Dependability and Fault Tolerance (Submitted), 2012,
Kaiserslautern (Germany)

Árpád Gellért, Horia Calborean, Lucian Vinţan, Adrian Florea, “Multi-Objective
Optimizations for a Superscalar Architecture with Selective Value Prediction,” IET
Computers & Digital Techniques (submitted, manuscript ID: CDT-2011-0116).

Workshops

FADSE was presented at HiPEAC Computing Systems Week, Chamonix, April 2011
by Ralf Jahr in a presentation called “FADSE and GAP: Design Space Exploration
for the Grid Alu Processor (GAP) with the Framework for Automatic Design Space
Exploration (FADSE)”

Technical Reports

Horia Calborean, “Developing a framework for ADSE which connects to multicore
simulators,” Computer Science Department, “Lucian Blaga” University of Sibiu,
2010, Sibiu, Romania.
Horia Calborean, “An overview of the multiobjective optimization methods,”
Computer Science Department, “Lucian Blaga” University of Sibiu, 2010, Sibiu,
Romania.
Horia Calborean, “An overview of the features implemented in FADSE,” Computer
Science Department, “Lucian Blaga” University of Sibiu, 2011, Sibiu, Romania.
Horia Calborean, “Introduction to the MANJAC system,” Computer Science
Department, “Lucian Blaga” University of Sibiu, 2011, Sibiu, Romania.

“If you don’t work on important problems,
 it’s not likely that you’ll do important work.”

Richard Hamming

Page 1 of 65

1 Introduction

As technology has advanced, computer systems have become more and more complex
[1][2][3][4]. When designing such a system, an architect must take into account many
parameters. The design space of a microprocessor-compiler ensemble can reach
millions of billions of possible configurations. A microprocessor can not go into
production until it is not evaluated to meet the performance criteria. Evaluating a
single configuration can take hours or even days. Therefore an exhaustive evaluation
is infeasible.

The current approach is to use human experts to select candidate
configurations, evaluate them on computer simulators and then try to optimize them.
With the growth in complexity and with the increasing number of integrated
heterogeneous cores, the task of finding good configurations becomes very hard for a
designer.

The problem is further exacerbated by the fact that not only performance
needs to be optimized: power consumption, area integration became very important
objectives. Finding relations between parameters of the architecture and the way they
influence the multiple objectives that need to be optimized proves to be difficult.

One solution to this problem is to use tools that perform automatic design
space exploration (DSE) using different heuristic search algorithms. In the HiPEAC
vision [5] automatic design space exploration (ADSE) is viewed as one of the most
important problems that need to be solved in the following years. Heuristic search
algorithms have been used for NP-hard problems for long time. In the recent years,
the computer designers have shown an increased interest for them. They are currently
the one of the few viable solutions to NP hard problems, like the one of design space
exploration.

The scope of this PhD thesis is to perform multi-objective optimization of
advanced computer architectures using experts’ domain-knowledge. For this we have
to fulfill the following objectives:

- analyze the state of the art heuristic algorithms and classify them;
- determine how they could cope with real life problems, where constraints

between the parameters might exist;
- find methods to measure their performance;
- develop a robust and fast DSE framework that can connect to any existing

computer simulator;
- include multiple heuristic algorithms into this framework;
- research how domain-knowledge could be easily integrated in this framework

and how it could influence the heuristic algorithms;
- evaluate the algorithms on several computer simulators; the simulators should

range from single to multi-core and even to system on chip simulators;
- perform comparisons between the algorithms and determine the impact of

domain-knowledge on the results.

“It's so much easier to suggest solutions
when you don't know too much about the problem.”

Malcolm Forbes

Page 2 of 65

2 Design Space Exploration Algorithms

As we already stated in Chapter 1 we are dealing with NP hard multi-objective search
problems. Manual design space exploration is not feasible so new methods are
required. One of them is to use multi-objective algorithms to perform this task
automatically.

We use heuristic-stochastic search methods that we divided into two classes:
evolutionary algorithms and bio-inspired algorithms. All the used algorithms are
based on the Pareto efficiency:

2.1 Multi-Objective Search Algorithms

In Figure 2.1-1 the Pareto front for a bi-objective minimization problem can
be seen. The points represent individuals. Point c is not on the Pareto front because it

is dominated by both
points, a and b. Points a
and b are not strictly
dominated by any
other, and hence do lie
on the frontier.

The problem
with the Pareto front is
that it does not give us
an ordering between the
points (for example
points a and b in the
figure above).

The following
definitions are used in

[6]:
Definition 1: given two vectors nRyx ∈

rr

, we say that yx
rr

≤ if ii yx ≤ for any

ni ,..,1= and that x
r

dominates y
r

(written as yx
r

p
r

) if yx
rr

≤ and yx
rr

≠ .

Definition 2: we say that a vector of decision variables nRXx ⊂∈
r

 is
nondominated with respect to X, if it does not exist another Xx ∈'

r

such

that)()'(xfxf
rr

p
rr

, where f
r

 is the multi-objective function.

Definition 3: a vector of decision variables nRFx ⊂∈
*r (F is the feasible

region) is Pareto-optimal if it is nondominated with respect to F.
Definition 4: the Pareto Optimal Set *P is defined by:

*P = { xFx
rr

∈ is Pareto-optimal}

Definition 5: the Pareto Front *PF is defined by:

{ }**)(PxRxfPF n ∈∈=
rr

r

We call Pareto front approximation (or known Pareto front), the Pareto
optimal solutions in the objective space, found by an algorithm up to a point. The

Figure 2.1-1 Pareto front

Design Space Exploration Algorithms

Page 3 of 65

individuals, that form the Pareto front approximation, are called, in the parameter
space, the Pareto set.

2.1.1 SEMO and FEMO Experiment

We used in our first experiments two simple evolutionary algorithms: SEMO and
FEMO [7]. SEMO stores an archive of all the non-dominated individuals. This
archive represents the current population. From this population a parent is chosen
randomly and mutated by randomly changing a parameter. The new individual is
accepted in the archive if it is not dominated by other individuals and there is no other
individual that has the same values for the objectives. If there are individuals in the
archive dominated by this new one, they are eliminated. FEMO is an improvement of
SEMO. The difference is that: when selecting the parent, the algorithm
deterministically chooses the individual with the smallest number of offspring.

We tested these two algorithms on two synthetic test problems LOTZ [7] and
DTLZ1 from the DTLZ family of problems [8]. We concluded that both algorithms
were able to solve the LOTZ problem in a relatively small amount of time (2% and
1% of the effort required by an exhaustive evaluation for SEMO and FEMO
respectively). The DTLZ1 problem was not solved by any of the algorithms (no
Pareto optimal points were found). These results were published by us in [9].

2.1.2 NSGA-II

NSGA-II is a genetic algorithm developed by Deb et al. [10]. The algorithm works as
follows: it first generates an initial population and evaluates it (this will be the parent
population). From this initial/parent population an offspring population is generated
using crossover and mutation. The two populations (parent and offspring) are united
into a single one and sorted (fitness assignment) according to the domination
relationship and a density information (crowding). From this sorted union the best
individuals (best fitness) are selected and they will form the new parent population
and the process is repeated.

2.1.3 PEA2

SPEA2 introduced by Zitzler et al. [11] is another genetic algorithm. The only
differences between NSGA-II and SPEA2 are: (a) SPEA2 uses an external population
(archive) to keep nondominated individuals and (b) it assigns fitness in a different
manner. First, the strength of each individual is computed (which is equal with the
number of individuals the current individual dominates). Then the raw fitness is
computed. The raw fitness is the sum of strengths of the individuals that dominate
current individual. To this raw fitness, the density information is added, which is the
inverse distance to the nearest kth neighbor, to obtain the fitness of the individual. The
algorithm then selects the best individuals (from both the archive and the offspring
population) and stores them in the archive. The archive is then used as a parent
population.

2.1.4 Comparison between NSGA-II and SPEA2

SPEA2 tends to retain many duplicates in its archive during the environmental
selection process (see [11]) partially because of the density computation method. In
SPEA2 identical individuals will have the same fitness assigned (only one neighbor is
used to compute the density), while in NSGA-II these individuals can have a different
fitness assigned. This happens because of the crowding assignment [10]: two

Design Space Exploration Algorithms

Page 4 of 65

individuals are used to compute the crowding, one on each side of the current
individual (sorted according to an objective). This means that twins will have one
identical individual, but there is a high probability, that the other one is a different
individual. In SPEA2 there is a chance that both individuals get selected and passed to
the next generation while in NSGA-II one of them might be discarded. During the
selection process, all the individuals have the same chance of becoming parents, but
since in SPEA’s archive there are more duplicates than in NSGA-II, they have a
greater chance of being selected and produce the same individuals. Another problem
that leads to duplicates is the archive used in SPEA2. SPEA2 stores in the archive
only the nondominated individuals. Parents are selected only from the archive but in
our explorations we noticed that there are usually fewer nondominated individuals
than the maximum size of the archive/population. As a result the archive will be quite
empty (hence a greater chance to select the same parents again) while in NSGA-II the
population is filled with worse individuals until it is full. The advantage of SPEA2 is
that these duplicated individuals do not have to be simulated again due to the
integrated database. The disadvantage is that SPEA2 does not have such a good
spread of solutions (even if at the end there are 100 individuals many of them are
duplicates).

2.2 Multi-objective Particle Swarm Optimization

In this chapter we will present some bio-inspired algorithms. They are based on the
way birds search for food.

2.2.1 OMOPSO and SMPSO

OMOPSO [12] is a particle swarm optimization method (bio-inspired). In these
algorithms the population is called swarm. The individuals are called particles, which
are "flown" through space following the best performing particle at that moment. The
position of a particle is given by the current values of its parameters, belonging to an
orthogonal representation particle's space. As every particle tries to get closer to the
current best particle its parameters are changed. The change takes into account both
the current global best and the particle's personal best. Based on this change, the
particle gets a new position and it needs to be evaluated again. After all the particles
are evaluated, the new global best particle is selected, the personal bests are updated
and the process is restarted. In multi-objective PSO algorithms there can be multiple
global best particles. The approach when selecting a leader is similar with selecting
parents in NSGA-II.

SMPSO [13] is a development of OMOPSO. The most notably change is that
it ads a method of constraining the maximum speed a particle can reach.

2.3 Handling Constraints

Most of the real world problems are constrained problems. Methods of handling these
constraints are needed. The method we used for constraints handling is proposed in
[10] and is employed in couple with binary tournament selection. The solution
adopted is:

- if both individuals are feasible then the domination relation is used;
- if one individual is feasible and one is not feasible, the feasible one is selected;
- if both individuals are infeasible then the one that violates the least constrains

is selected. If this can not be determined or both individuals violate the same
number of constrains the selected individual is chosen randomly.

Design Space Exploration Algorithms

Page 5 of 65

2.4 Measuring Multi-objective Algorithms Performance

2.4.1 Hypervolume

This metric was used by Zietzler and Thiele [14] and Coelo [15]. Let
XxxxX k ⊆=),...,,(' 21 be a set of decision vectors (individuals). The function

)'(XS gives the volume enclosed by the individuals and the axes in the objective
space.

When the
objectives have to be
minimized a point has
to be established,
called hypervolume
reference point, which
will replace the origin
in the hypervolume
computation. The

hypervolume
reference point
coordinates are set to
the maximum values
of the objectives (see
Figure 2.4-1). The
hypervolume value
represents the

percentage covered by the volume enclosed between the hypervolume reference point
and the Pareto front approximation, from the total volume enclosed between the
hypervolume reference point and the axes (the values are normalized).

2.4.2 Two Set Difference Hypervolume

This metric was proposed by E. Zitzler in his PhD thesis [16]. Two Set Difference
Hypervolume (TSDH) is defined as:)"()"'()",'(XHXXHXXTSDH −+= where

XXX ⊆'',' are two sets of decision vectors,)(XH is the hypervolume of the space
covered by the decision vector X, and "' XX + is the nondominated decision vector
obtained after the union of 'X and "X .

)",'(XXTSDH computes the hypervolume of the space that it is dominated by
'X but not by "X .

2.4.3 Coverage of Two Sets

This metric was used by Zietzler and Thiele [14] and Palermo [17]. It computes the
percentage of individuals from a populations dominated by individuals from another
population.

Let XXX ⊆'',' be two sets of decision vectors. The function C maps the
ordered pair ('',' XX) to the interval [0, 1]:

''

}''':'';''''{
)'','(

X

aaXaXa
XXC

f∈∃∈
=

Figure 2.4-1 Hypervolume computation for a minimization

problem

“Strive not to be a success, but rather to be of value.”

Albert Einstein

Page 6 of 65

3 Developing FADSE: A Framework for Automatic
Design Space Exploration

Framework for Automatic Design Space Exploration (FADSE) is a tool, developed by
us, which is able to perform automatic design space exploration using a large variety
of algorithms. FADSE is able to run the evaluations in a distributed manner on Local
Area networks (LAN) or High Performance Computing (HPC) systems. It is reliable:
can recover from crashed network, crashed clients or power loss. It includes many
features that allow the user to intervene and input his/hers knowledge inside the
search algorithm. All this information can be provided into a human readable form
using a simple interface (some inspired from the M3Explorer tool [18]).

FADSE integrates the jMetal library [19] which provides many state-of-the-art
multi-objective search algorithms. We have extended jMetal and we are able to
perform design space exploration with simulators like: Multi2Sim [20], GAP [21],
M5 (http://www.m5sim.org) and M-SIM (http://www.cs.binghamton.edu/~msim/).
We have included multi-objective test functions (LOTZ) and metrics: error ratio,
coverage of two sets, hypervolume, hypervolume two set difference.

FADSE is developed in JAVA and can be run on different operating systems.
The latest version of FADSE can be downloaded from

http://code.google.com/p/fadse/.

3.1 Accelerating DSE through Distributed Evaluation

The framework has been designed as a client-server application. The server runs the
DSE algorithm and the clients perform the simulations.

We changed some of the algorithms implemented in jMetal to work in a
distributed manner. Most of the evolutionary algorithms generate an offspring
population and only after all the individuals are evaluated they are used. Taking
advantage of this behavior the evaluation process can be distributed easily. The
offspring individuals are evaluated in parallel by FADSE (see Figure 3.1-1). If
multiple benchmarks need to be run to evaluate a single configuration, then these
separate evaluations are also done in parallel.

Next FADSE collects all the results for a single individual and computes the
average. As an example, for an algorithm with an offspring population of 100, where
each individual has to be evaluated on 10 benchmarks, we reach 1000 simulations that
can be run in parallel.

FADSE is designed to cope with the failures of clients or the network. If a
client does not respond, the task, which was scheduled on it, is sent to another client.
After a number of retries the job is marked as infeasible if none of the clients manages
to complete it. This allows the exploration to continue even if some configurations are
proven to be impossible to simulate. If the whole system has to be restarted FADSE
can continue its work because of the built in checkpointing mechanism.

The clients have recovery mechanisms implemented. When a client is started,
in parallel a watchdog timer thread is also executed. If the client does not receive
messages for a period of time and it is not simulating a configuration, it is
automatically restarted. This prevents situations were a client might be blocked on
something unexpected.

Developing FADSE: A Framework for Automatic Design Space Exploration

Page 7 of 65

Figure 3.1-1 Structure of FADSE (distributed version)

With this server-client configuration in place, we were able to run on local

area networks, HPC systems and multi-processor virtual machines. Some of the
systems on which we have tested FADSE are presented below.

As a local area network we have used 9 Intel dual-core machines. They were
configured in VPN (Virtual Private Network) to assure that their IP’s did not change
over time (they were configured using DHCP and power loss was frequent). One
computer was chosen as the server. On this computer the DSE algorithm and the
MySQL server (see Chapter 3.2 about the reuse scheme implemented in FADSE)
were running. On all the other machines, two FADSE clients were started. This
system was used to obtain some of the results presented in Chapter 5. The system had
a combination of Windows XP and Windows 7 machines.

FADSE was used on two HPC systems: one residing at University “Lucian
Blaga” from Sibiu and one in Bucharest from the Politehnica University. The one
from Sibiu was extensively used. All the results presented in Chapters 6 and 7 were
obtained using this system. All these clusters use Red Hat Linux as an operating
system.

The HPC system from Sibiu (http://zamolxe.hpc.ulbsibiu.ro/ganglia/) contains
two clusters: one based on Intel Xeon quad core processors (CSAC cluster) and one
based on IBM Cell processors (ACAPS cluster).

The CSAC cluster contains 15 blades with two processors and 4GB of
DRAM. This means there are 8 cores on each blade, which leads to 120 cores in the
whole system. In our experiments we have used one node (head node) as the server
and no client was run on this node (this node was used by many other services,
including MySQL). On all the other nodes clients were started (8 on each one).

The ACAPS cluster contains two blades, each blade having two Cell
processors. Each Cell processor contains a multithreaded PowerPC core and 9
specialized processing units. We have tested successfully FADSE with this system
too. We started a server on the head node on the CSAC cluster and the clients on the
ACAPS cluster.

Successful tests were conducted on the HPC from Bucharest. This system
allows starting processes using batch commands. Some special scripts were required

Developing FADSE: A Framework for Automatic Design Space Exploration

Page 8 of 65

to map FADSE on this system, but in the future we plan to integrate the possibility to
use batch commands from within FADSE using some specialized connectors. Tests
were conducted using around 100 clients.

We present one final use case: a Windows 7 based virtual machine with 32
processors from the University of Augsburg. We used this machine to obtain most of
the results in Chapter 5. We either ran a single server with 32 clients (the server does
not consume much processor time, and it is idle most of the time during simulation),
or two servers in parallel with 16 clients each.

Multiple servers can be started on the same machine and they can also run
alongside clients. This means that multiple DSE processes can be started in parallel on
the same system, so all the resources available can be used.

3.2 Accelerating DSE through Results Reuse

DSE algorithms tend to produce the same individuals again after some generations.
Instead of simulating them once more we thought to reuse the results from a database.
For this we have connected FADSE with a Database Management System (DBMS).

The integration with the database proved to be very successful. We reached a
reuse of around 67% during a 100 generations run with a population of 100
individuals. Also since we ran DSE processes with the same simulator but in different
context, results could be used from previous explorations leading to an even greater
reuse.

3.3 Universal Interface – Connectors

FADSE is designed in such a manner that it can be connected to almost any existing
simulator with a minimal effort and in most situations with no changes to the
simulator (source code is not necessary).

3.4 Extensible Input XML Interface

A XML interface is used to configure FADSE, the design space and the specific
constrains. First the user has to specify the simulator connector he/she wants to load
and the set of parameters required by the connector.

Then a list of benchmarks is specified, the database connection is configured
and the list of parameters that need to be varied (these parameters can be of type
integer, arithmetical progression, geometrical progression, list of strings, etc.) is
specified.

“Information is not knowledge.
The only source of knowledge is experience.”

Albert Einstein

Page 9 of 65

4 Improving FADSE with Domain-specific Knowledge

All the algorithms included in FADSE are general ones. They were designed to solve
many types of problems. Specialized algorithms, that include knowledge about the
problem to be solved, might provide better results, but they can be applied to a single
problem.

We still want FADSE to be a general framework, a tool that can be used with
many simulators/problems. The goal of this chapter is to identify some methods to
express knowledge in an easy manner and to include it into FADSE without loosing
generality. This knowledge will be then used by the design space exploration
algorithms.

4.1 Design Space Constraints

Constraints are needed when optimizing processor architectures to avoid impossible
configurations or configurations that the designer knows will not lead to good results.
One of the best examples is that the size of the level 2 cache has to be bigger then the
size of the level 1 cache, otherwise it does not make any sense. For a DSE algorithm,
the size parameter has no meaning so it might generate configurations where the
above rule is not respected.

When designing the interface for FADSE, through which the user can specify
the constraints, we used as a model the M3Explorer tool. The implementation is
however original. Migrating from M3Explorer to FADSE should not be difficult since
FADSE’s interface is mostly a superset of the M3Explorer interface. The constraints
can be easily expressed from within the input XML configuration file.

The constraints implemented in FADSE are one of its most powerful features.
They give the user a good control over the size of the design space and its borders.
Constraints help the algorithm avoid exploring uninteresting areas, resulting in a
faster DSE process. They have been used extensively during our experiments (see
Chapter 6).

4.2 Hierarchical Parameters

4.2.1 Motivation

In many designs there are parameters which validate or invalidate another set of
parameters. For example the parameter “branch predictor type” will validate or
invalidate the parameters associated with a specific value of this parameter. If the
branch predictor type is set to a two level adaptive predictor the active parameters
might be table sizes, history length and other. If the branch predictor is a neural
predictor then another set of parameters will be active. These might lead to problems
during an evolutionary algorithm.
 To solve this problem we proposed and developed an XML interface that
allows the user to specify the hierarchy of parameters and also some new specialized
genetic operators for crossover and mutation.

Improving FADSE with Domain-specific Knowledge

Page 10 of 65

4.2.2 Adapting Genetic Operators

4.2.2.1 Crossover

The crossover operator receives the tree and two individuals. It switches from the
current encoding of the individual to a tree encoding. At the same time it determines
the valid and invalid edges. Crossover can be performed on edges that do not point to
an invalid node or on the root nodes.

4.2.2.2 Mutation

The mutation operator is simpler. The individual to mutate is inserted in the tree and
the array of binary values is extracted. One of the values is randomly picked and
mutated. Of course this is done only taking into consideration the mutation
probability.

4.3 Introducing Domain-specific Knowledge through Fuzzy
Logic

In this paragraph we propose to use fuzzy rules for representing domain knowledge in
an easy to use language by the designer that can be also understood by our DSE tool.
As far as we know, we are the first ones to use fuzzy rules as a method to express a
priori knowledge into a design space exploration tool for computer architectures.

These rules allow us to write statements like:
IF level 1 cache size IS small THEN level 2 cache size IS big

4.3.1 Mamdani Rules-system

From all the possible inference systems we have focused on the Mamdani inference
system [22]. For this we have used the MIN and MAX functions for AND and OR
respectively. For the implication we used the Mamdani implication (MIN). For
consequent aggregation we used the MAX function [23][24].

4.3.2 Integrating Fuzzy Logic into FADSE

4.3.2.1 FCL Language

The Fuzzy Control Language (FCL) [25] has been used to describe fuzzy functions.
FCL is a standard language for fuzzy control programming and has been published by
the International Electrotechnical Commission (IEC) [26]. The language specification
can be found in IEC document 61131-7. A draft version can be found at [25]. We
integrated the jFuzzyLogic library [27] into FADSE to be able to use the FCL
specification and the included inference systems. FADSE accepts as an input a file
written in FCL.

4.3.2.2 Mutation Operators

To use the information provided by the fuzzy rules we had to change the genetic
operators.

4.3.2.2.1 Changing the Bit-flip Mutation Operator

In this work the bit flip mutation operator was extended to take into consideration the
information provided by the output of the fuzzy rules.

Improving FADSE with Domain-specific Knowledge

Page 11 of 65

 The classical bit flip mutation is changed as follows:

1. For all the variables (genes) in the individual (chromosome);

1.1. If a fuzzy rule exists for this parameter
1.1.1. Do mutation (with a certain probability) taking into consideration the

information provided by fuzzy rules;
1.2. Otherwise (do bit flip mutation);

1.2.1. Generate a random number between 0 and 1;
1.2.2. If the random number is smaller than the probability of mutation;

1.2.2.1. Change the current variable to a random value;
2. STOP.

 The only change to the bit flip mutation algorithm is that: if the current
variable is defined as an output variable in the FCL file then it switches to a different
mutation. In this work we call this mutation: fuzzy mutation.
 Two implementations will be discussed below: the so called constant
probability implementation and an implementation based on a Gaussian distribution
of probability.

4.3.2.2.2 Constant Probability

To preserve diversity, the information provided by the fuzzy rules is not always taken
into consideration. To obtain this, a probability of applying the fuzzy information is
used, called: fuzzy probability.

In the simple implementation, this fuzzy probability is constant during the run
of the algorithm and it is set to be equal with the probability of mutation.

4.3.2.2.3 Gaussian Probability

The fuzzy mutation operator computes membership of the output variable. Then it
computes the center of gravity approximation of this membership function. This value
is referred as COG in the following. For this COG the membership µ value is
computed. The current output variable is set to the value of COG with a certain
probability (as we said before, we call it the fuzzy probability).
 The fuzzy probability is a value that follows the right hand side of a Gaussian
function. The objective is to have a high mutation probability at the beginning of the
search algorithm. As the algorithm progresses (x from the equation below increases
for each individual sent to mutation) the influence of the rules will not be so big. We
have selected some values for the Gaussian function so that after 500 individuals sent
to mutation the fuzzy probability should be equal with the mutation probability

()

yprobabilitmutationeyprobabilitmutationxf
x

final _)_1()(
2

2

)150(2 +⋅−= ⋅

−

 The range of the values of this function is between (mutation_probability, 1].
We have discovered from our experiments that for good results diversity must be
preserved. A probability of 1 will not generate a diverse population. All the
individuals will tend to respect the preference of the designer as he/she described it
using the fuzzy rules. To avoid this, the function is multiplied by 0.8.
 The membership µ value of the value obtained after defuzzification is used
here. We are using it as a measure of confidence. If the membership value is low then

Improving FADSE with Domain-specific Knowledge

Page 12 of 65

it means we are in between intervals and the rules were contradictory (e.g. one wants
to make the cache big, the other one wants to make it small). In this situation we
decided to lower the probability to use the fuzzy information. The final probability is
obtained using the following formula:

()

+⋅−⋅⋅= ⋅

−

yprobabilitmutationeyprobabilitmutation
x

_)_1(8.0probfuzzy
2

2

)150(2µ

4.3.2.2.4 Random Defuzzifier

There are special situations when the center of gravity based defuzzification methods
do not provide good results. Such a case might happen when the input fuzzy functions
have an almost rectangular shape. In this situation any value of the input will have a
membership value equal (or almost equal) with 1. If the membership of the input is
always 1, then the membership function from the consequent will be identical for all
the inputs. This means that COG will return the same value each time. To avoid such
situations we have developed a new defuzzifier inside jFuzzyLogic library. We called
it: RandomDefuzzifer. This new defuzzifier chooses randomly a value from the output
membership function but only if the intervals where the membership value is above a
configurable threshold.
 This defuzzifier has been used by us in Paragraph 5.5 where the membership
functions are generated automatically and their shape is not trapezoidal.

4.3.2.3 Virtual Parameters

Rules provided by the computer designers are usually quite general (see 6.1 for more
details about the SLVP): IF L1_Data_Cache IS big/small THEN SLVP_size IS
small/big.

The problem arises when the level 1 data cache size is not determined by a
single parameter. The size can be determined by a couple of parameters: block size,
number of lines, associativity. This means that the rule might have to be split into
several rules. But defining the membership functions becomes very difficult. If a
parameter is “big” but all the others are small in the end the cache size is small.
Defining rules becomes harder.

To solve situations like this one, we have implemented "virtual parameters".
These virtual parameters are formed using a combination of other real parameters.

“In theory, there is no difference between theory and practice.
 But, in practice, there is.”

Jan L.A. van de Snepscheu

Page 13 of 65

5 Multi-objective Hardware-software Optimization of
the Grid ALU Processor

In this chapter we present the results obtained with a superscalar processor developed
at the Augsbug University and the associated code optimization tool. These
represented the first real tests for FADSE and many of the features developed were
requirements posed by these tools.

This work is the result of collaboration between us and the Augsburg
University through Professor Theo Ungerer and PhD student Ralf Jahr. The obtained
results were published in conferences [28] [29] [30] (submitted) or presented at
workshops [31].

5.1 GAP and GAPtimize Overview

5.1.1 Description

The Grid ALU Processor (GAP) is a single-core processor architecture developed to
speed up the execution of single threaded programs. One big advantage of GAP is that
it uses Portable Instruction Set Architecture (PISA) derived from a MIPS instruction
set architecture. This means that GAP is able to run existing programs without any

modification required. More
details about the GAP
processor can be found in
[32] and [33].

The varied
parameters and their
domains are presented in
Table 5.1-1.The size of the
space is over 1 million
(1016640) possible
configurations.

In conjunction with GAP, we used GAPtimize a post-link code optimization
tool developed especially for this processor. GAPtimize works on statically linked
executable files compiled with GCC for PISA. Some of the code optimizations
implemented are: predicated execution, a special scheduling technique, inlining of
functions [28], a software-assisted replacement strategy for the configuration layers
supported by code annotations called qdLRU [34], static speculation [35].

5.1.2 Objectives

We have focused on two objectives for the GAP architecture: speed - described in
terms of cycles per instruction (CPI) or cycles per reference instruction (CPRI) – and
hardware complexity. The second objective we used is called complexity. This metric
tries to give a comparable number that describes the hardware complexity of the GAP
architecture. Together with Ralf Jahr we proposed this metric because GAP does not
have a hardware implementation yet. Its purpose is to compare the hardware
complexity GAP configurations.

Table 5.1-1 Parameter space for GAP

 Description Domain

rC Array: rows {4, 5, 6, 7, ..., 32}

cC Array: columns {4, 5, 6, 7, ..., 31}

lC Array: layers {1, 2, 4, 8, ..., 64}

1cC Cache: line size {4, 8, 16}

2cC Cache: sets {32, 64, 128, ..., 8192}

3cC Cache: lines per set {1, 2, 4, 8, ..., 128}

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 14 of 65

More details about these metrics can be found in our article presented at HPCS
2011 International Conference [28].

5.2 Automatic DSE on the Hardware Parameters

This work continues the design space exploration performed by Basher Shehan from
University of Augsburg for his PhD thesis [36]. He has performed an extended DSE
exploration and we try to see if better results can be obtained automatically.

5.2.1 Methodology

We are using NSGA-II algorithm for the DSE process. We used a crossover
probability of 0.9, mutation probability was set to 1/(number of parameters) = 1/6
~0.16. These values were recommended in [10]. Bit flip mutation, single point
crossover and the binary tournament selection, proposed in [10], were used as
operators. The population size was varied, to study its influence on the obtained
results, from 12 to 100 individuals.

We ran up to 200 generations but the results do not improve greatly after 50
generations. The results presented in this chapter are obtained after 50 generations.

We selected 10 of the 14 benchmarks used by Shehan to reduce the time
needed to evaluate an individual of the design space. The 10 benchmarks are: dijkstra,
qsort, tele-adpcm-file-decode, stringsearch, jpeg-encode, jpeg-decode, gsm-encode,
gsm-decode, rijndael-encode, rijndael-decode.

The results were obtained using 9 Intel Dual Core computers organized in a
LAN located at the University “Lucian Blaga” from Sibiu, Romania. Other results
were obtained using a virtual machine with 32 cores hosted by a supercomputer
located at the University of Augsburg, Germany. These machines were used to obtain
all the results for GAP and GAPtimize presented during this chapter.

5.2.2 Results

In our first experiments we studied the influence of the population size on the results.
We changed the population size to 12, 24, 50 and 100. Good results were obtained for
a population of size 50 and 100, so only they will be presented.

We ran with each population size two times and computed the average
hypervolume. We ran for 50 generations with a population of 100 and 100 generations
with a population of 50 individuals. Comparing them using the generation count is not
fair since at generation 10, for example, the run with a population size of 50 produces
far less individuals than the run with a population size of 100. We computed the
number of unique individuals produced by each run (reuse is taken into
consideration). We plotted the hypervolume against the average number of
simulations (see Figure 5.2-1). From this figure we can conclude that even if the run
with a larger population sends more individuals to simulation it finds better results in
the same amount of time. We further analyzed the results and concluded that a run
with 100 individuals requires 30 generations to simulate the same amount of
individuals as a simulation with 50 individuals over 100 generations. This means that
the run with a population with a size of 100 individuals has a larger ratio of unique
individuals produced at each generation.

We analyzed the Pareto front approximation and saw that the run with a
population of 50 did not (sufficiently) explore the area where the complexity is very
low.

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 15 of 65

0.808

0.81

0.812

0.814

0.816

0.818

0.82

0 500 1000 1500 2000 2500 3000

Number of simulated individuals

H
y

p
e

rv
o

lu
m

e

Population size: 50 Population size: 100

Figure 5.2-1 Average hypervolume comparison between runs with a population size of 100 and

runs with a population size of 50

0.2

0.4

0.6

0.8

1

50 250 450 650 850

Number of simulations

C
o

v
e

ra
g

e

Coverage(pop 100, pop 50)

Coverage(pop 50, pop 100)

Figure 5.2-2 Coverage comparison between a DSE process with a population of 100 and another

one with a population of 50

We decided to compare the two runs using the coverage metric (see Paragraph

2.4.3). According to the coverage (see Figure 5.2-2), the run with a population size of
100 individuals has slightly better results.

For the rest of the experiments we used the population size set to 100
individuals. In Figure 5.2-3 we compare the results obtained by FADSE against the
manually obtained results in [32]. In Figure 5.2-4 only a section of the total Pareto
front approximation is depicted. Better results were obtained by FADSE than the ones
obtained during the manual exploration. FADSE was able to find configurations
having half the value of complexity at the same CPI.

After analyzing the results, we observed that the rule of thumb (number of
columns equal with number of rows) used in the manual exploration was not
beneficial. The array of FUs had too much columns. We can conclude that FADSE
can help the designer find better configurations.

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 16 of 65

Figure 5.2-4 Zoom on most interesting area

(highlighted box in Figure 5.3-3)

In Figure 5.2-3 the shape of the obtained Pareto approximated front tells us

that configurations with a complexity above 1000 do not lead to a much higher
performance. At this complexity, the configuration of GAP is: a matrix with 32 lines,
11 columns and 32 configuration layers, a cache of 512kB.

From the reuse point of view we can see in Figure 5.2-5 that the algorithm
produces during the first generations many new individuals (i.e. individuals that were
never generated before) and many of them are added to the population. As the
algorithm advances, less and less new individuals are created (the rest are individuals
that were already produced in the past) and, of course, even fewer of them survive to
the next generation. Because of this, the reuse from the database is high. In a run with
100 generations we have reached a reuse of 67%. This means a great time reduction
for the DSE process.

0 10 20 30 40 50 60
0

20

40

60

80

100

120
New
individuals

Individuals
added to
population

Generation

N
u
m

b
e

r
o

f
In

d
iv

id
u
a
ls

Figure 5.2-5 Comparison between the number of newly generated individuals (offspring) and the

number of them that actually reach the next generation

Figure 5.2-3 Total result space

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 17 of 65

Figure 5.2-6 Evolution of the hypervolume value over the generations

Figure 5.2-5 is correlated with Figure 5.2-6 where the evolution of the

hypervolume value is presented. Since fewer individuals are accepted in the next
population, the hypervolume value stops increasing. We can observe that the
algorithm progresses fast during the first generations but then it converges to an
approximated Pareto optimal front.

5.2.3 Conclusions

With this experiment we have demonstrated that:
• FADSE can find better solutions than the human designer;
• FADSE can cope with the large design space;
• It is reliable since it was able to run for long periods of time on
different systems: LANs and virtual machines with many cores;
• The database integration accelerates the DSE process considerably
(67% reuse).
After careful analysis of the obtained results we concluded that GAP is a

scalable architecture and that bigger caches do not cancel the effects of the ALU
array.

5.3 Automatic DSE on the Hardware and Compiler
Parameters

The increasing complexity of processor architectures makes it harder even for code
optimization tools to find good parameters. Settings of the code optimizations might
have to be substantially different for similar target platforms. We decided to use
FADSE to solve this problem too.

From the code optimizations included in GAPtimize we focused only on
function inlining. The main challenge is choosing the right function callers which
shall be replaced by copies of the function body.

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 18 of 65

5.3.1 Methodology

We are using the same settings for the parameters as in previous section:
- bit flip mutation with a probability of 0.16 (we fix the cache parameters

and the number of configuration layers);
- single point crossover with the probability to apply set to 0.9;
- binary tournament selection;
- population size 100.
GAPtimize alone has a size of the space of 2.1*1010. Together with GAP the

size of the design space is over 2.1*1016. We observed, from previous experiments,
that function inlining accelerates GAP because it makes the instructions accessible
faster. This is due to the fact that instructions already reside in the cache or in a
configuration layer. A configuration of GAP with a large cache or with many
configuration layers might not benefit so much from the function inlining
optimization. Thus, we decided to restrict the cache size to 8kB and the number of
configuration layers to 8. The size of the space with these restrictions is ca. 1.8 *1013.

5.3.2 Results

Our first test was to see if FADSE can cope with code optimizations. We decided to
fix the hardware to a matrix with 12x12 functional units and optimize at first one
single objective (CPRI). We selected dijkstra benchmark for this experiment.

FADSE was able to find good parameters for function inlining and the
execution time of the best found individual was reduced by 9.1% compared with the
run with no optimization.

Next, the number of benchmarks was increased to 10, but the hardware
remained fixed, so we still have single objective optimization. The best set of
parameters found by FADSE lead to a reduction of the execution time of 3.9%. The
increase is not as significant as for dijkstra because not all the benchmarks are
sensitive to function inlining.

Figure 5.3-1 DSE of inlining and hardware parameters for 10 benchmarks, executed on GAP

with NxNx8 array and 8 kb instruction cache

We moved then to the true DSE process, were both hardware and compiler

parameters are optimized at the same time. FADSE obtained very good results. In
Figure 5.3-1 a comparison in the objective space between the results obtained with
and without GAPtimize is depicted. The figure proves that a run with GAPtimize
obtains better results and that FADSE is able to find good parameters for inlining.

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 19 of 65

5.3.3 Conclusions

During the single objective optimization FADSE was in connection with the
heuristics and able to perform inlining as an adaptive code optimization, thus
providing good results.

FADSE is also able to cope with hardware and software parameters, at the same
time, and find good solutions even in a huge design space (1.8*1013 individuals) and
can be used for code optimizations.

5.4 Comparison between DSE Algorithms

The results presented in this paragraph were published in our paper called
“Optimizing a Superscalar System using Multi-objective Design Space Exploration”
[29].

In this paragraph we are using GAP and GAPtimize to compare different
heuristic algorithms. We focus on three algorithms: two genetic (NSGA-II and
SPEA2) and one particle optimization (SMPSO).

5.4.1 Methodology

We use our classical configuration of the NSGA-II algorithm: bit flip mutation with a
probability of 0.16, single point crossover with the probability to apply set to 0.9,
binary tournament selection and a population size of 100 individuals.

For SPEA2 we use the same operators and probabilities as for NSGA-II and
we set the archive size to 100.

For the particle swarm optimization algorithms we used a swarm size of 100.
For the velocity computation we used the values recommended in [13]:

- C1 and C2 are randomly chosen in the interval [1.5, 2.5];
- r1 and r2 are randomly chosen in the interval [0, 1];
- inertial weight W is fixed to 0.1.
We have generated a random population and all the algorithms were started

from this population. This way, a fair comparison between the algorithms can be
performed. Due to time constraints (about 5 days per run) we could not afford to run
multiple times and present average results.

For the runs with GAP we decided to vary all six parameters. For GAPtimize
we fixed the cache size and the number of configuration layers (see 5.3.1 for
motivation). All the runs were performed on 10 benchmarks from MiBench suite.

When running with GAPtimize, the benchmarks were compiled in GCC with
function inlining deactivated, because GAPtimize does this code optimization.

5.4.2 Results

5.4.2.1 Results on GAP

We began by comparing the three algorithms using only GAP. We ran all the
algorithms up to generation 50. We computed the coverage for all the possible
combinations. The first comparison was made between NSGA-II and SPEA2 (see
Figure 5.4-1). Their results are similar for the first generations but then NSGA-II
finds more individuals that dominate individuals obtained by the SPEA2 algorithm.
The conclusion, we can draw from the coverage value over the generations, is that
NSGA-II performs better than SPEA2.

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 20 of 65

Figure 5.4-1 Coverage comparison between NSGA-II and SPEA2

Next we compared NSGA-II and SMPSO. In Figure 5.4-2 is illustrated the

coverage value over the generations. SMSPO generates more individuals that
dominate individuals found by NSGA-II.

SMPSO seems to be the best algorithm from the coverage point of view. On
both comparisons SMPSO has a great advantage over NSGA-II and SPEA2 during
the first generations. This means that SMPSO converges faster to better solutions, as

for NSGA-II and
SPEA2 it takes more
time to discover
individuals of similar
quality.

We compared
the algorithms from
the perspective of a
different metric:
hypervolumne. The
evolution of the
hypervolume over
the generations is
shown in Figure
5.4-3. The
hypervolume gives

information about the convergence of the algorithm. When the same reference point is
used (see Paragraph 2.4.1), it can also give us a hint about the quality of results. We
are using the same reference point so we can say from Figure 5.4-3 that SMPSO finds
the best results. SMPSO reaches a hypervolume that is never reached by the two
genetic algorithms.

From a convergence point of view, the particle swarm optimization algorithm
is again the best. It converges faster than the genetic algorithms. SPEA2 has a better
start than NSGA-II but the latter obtains a better hypervolume value in the end.

In the domain of computer architecture we are dealing with long evaluation
times because simulators are used. Therefore it is important to count how many
simulations each algorithm requires to reach a certain hypervolume. If an algorithm

Figure 5.4-2 Coverage comparison between NSGA-II and SMSPO

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 21 of 65

generates the same individuals over and over again they can be reused from the
database. Reusing the individuals means fewer simulations, thus less time required for
the exploration time.

First, we present the number of simulations performed by each algorithm to
reach a certain generation (see Figure 5.4-4). We can see that the SMPSO algorithm
performs more simulation compared to the genetic algorithms. NSGA-II does more
simulations than SPEA2. Thus, to reach a certain generation, SMPSO and NSGA-II
needed to perform more simulations.

Figure 5.4-3 Hypervolume comparison between NSGA-II, SPEA2 and SMPSO

Figure 5.4-4 This figure shows how many individuals were simulated to reach a certain

generation.

With this in mind we decided to compare the hypervolume from this point of

view. In Figure 5.4-5, we plot how many individuals had to be simulated to reach a
certain hypervolume. The ranking of the algorithms does not change. Even if the
SMPSO algorithm requires more simulations, the quality of the obtained results
justifies the effort.

Figure 5.4-4 gives us data about the reuse percentage. During 50 generations
(5000 evaluated individuals) SMPSO sent for evaluation ca. 4000 individuals. NSGA-

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 22 of 65

II and SPEA2 sent ca. 2700, 1800 respectively. This means a 20% reuse for SMPSO,
46% for NSGA-II and 63% for SPEA2. The reuse method incorporated into FADSE
leads to a huge time reduction for the DSE process.

SPEA2 tends to produce the same individuals again because it retains more
duplicates in the archive than the NSGA-II algorithm. We already presented the
reason for this in 2.1.4. SMPSO produces new individuals so often because all the
particles are moved at each generation. SMSPO applies a sort of mutation on all the
parameters (fly), not on only 1/(number of parameters) of them.

Because SPEA2 retains many duplicates, the spread of solutions in the
objective space is not so good, compared with NSGA-II and SMPSO.

Figure 5.4-5 Hypervolume comparison of the three selected algorithms against the total number

of evaluated designs

Figure 5.4-6 Section of the Pareto front approximations obtained by each algorithm after 50

generations

We compared the Pareto fronts approximation found by the algorithms (see

Figure 5.4-6). The figure presents only a section of the entire Pareto front. We
decided to depict only this area because on the rest of the front there are almost no
differences between the algorithms.

It can be observed that SMSPO finds slightly better results on a small area of
the Pareto front approximation between the complexities 100-180, while the
complexities of all the solutions found by the algorithms range from 30 to 2000. Even

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 23 of 65

in this small area, the differences are minimal. The metrics might be misleading;
showing a big difference between the algorithms, while in reality the difference is
only marginal. Even so, the fact that SMSPO converges faster recommends him as a
good algorithm for design space exploration.

We decided to use the Two Set Difference Hypervolume metric (see
Paragraph 2.4.2) to see how much of the space is really dominated by a single
algorithm. The results can be seen in Figure 5.4-7. The highest value is obtained when
we are comparing the SMPSO algorithm with SPEA2. The next two (in terms of
value) comparisons are between SMPSO and NSGA-II and between NSGA-II and
SPEA2, so this metric keeps the ranking showed by the other metrics. It also shows us
that in fact only 0.001-0.002% of the entire hypervolume covered by the
approximated Pareto fronts is dominated by the winning algorithms.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Generation Count

T
w

o
 S

e
t

D
if

fe
re

n
c

e
 H

y
p

e
rv

o
lu

m
e

TSDH(NSGA-II,SPEA2) TSDH(NSGA-II,SMSPO) TSDH(SPEA2,NSGA-II)

TSDH(SPEA2,SMPSO) TSDH(SMPSO,NSGA-II) TSDH(SMPSO,SPEA2)

Figure 5.4-7 Comparison between the algorithms using the Two Set Difference Hypervolume

(TSDH) metric

5.4.2.2 Results on GAP with GAPtimize

In this chapter we compared the three algorithms on GAP with GAPtimize. The same
10 benchmarks were used as in previous section.

We start with a coverage comparison between the two genetic algorithms. For
the first 6 generations there is no much difference between the algorithms (see Figure
5.4-8). From there on SPEA2 gains a huge advantage. By the end of the DSE process
NSGA-II does not dominate any of the individuals found by SPEA2, while SPEA2
dominates over 60% of the individuals discovered by NSGA-II. We selected SPEA2
as the best algorithm and compared it with SMPSO using the coverage metric (see
Figure 5.4-9). SMPSO has the best results, but the difference is not that big, as we
have seen between SPEA2 and NSGA-II.

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 24 of 65

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Generation count

C
o

v
e

ra
g

e
Coverage(NSGA-II,SPEA2)

Coverage(SPEA2,NSGA-II)

Figure 5.4-8 Coverage comparison between DSE runs with NSGA-II and SPEA2

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Generation count

C
o

v
e

ra
g

e

Coverage(SMPSO,SPEA2)

Coverage(SPEA2,SMPSO)

Figure 5.4-9 Coverage comparison between DSE runs with SPEA2 and SMPSO

0.225

0.23

0.235

0.24

0.245

0.25

0.255

0.26

0 500 1000 1500
Number of individuals

H
y

p
e

rv
o

lu
m

e

NSGA-II (28 generations)

SPEA2 (68 generations)

SMPSO (19 generations)

Figure 5.4-10 Hypervolume comparison between NSGA-II, SPEA2 and SMPSO considering the

number of simulated individuals

In this experiment, SPEA2 simulates least individuals to reach the same
generation. NSGA-II performs around 1800 simulations in 29 generations. SMPSO
generates the same amount of individuals in only 19 generations, while SPEA2
requires 68 generations to reach that number. It must be noted that, after the 20th
generation, the number of new individuals produced by SPEA2 decreases

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 25 of 65

dramatically (20 out of 100 individuals at generation 20 to 5 out of 100 at generation
69).

With this in mind we compared the hypervolume values (see Figure 5.4-10).
SMPSO is still the best and also has the fastest convergence speed from the three.

We analyzed the evolution of the Pareto fronts approximation (not showed
here) and we concluded that during the generations the difference is not very big
between the algorithms in terms of quality of solutions, as it was depicted by the
coverage metric.

Then, we compared the Pareto fronts approximation obtained by the three
algorithms after around 1800 simulations (see Figure 5.4-11). There are not many
individuals from other algorithms except SMPSO, in the figure, because they are
overlapped. The algorithms obtain practically the same results.

0.9
0.95

1
1.05
1.1

1.15
1.2

1.25
1.3

0 100 200 300 400 500 600

Hardware complexity

C
P

R
I

NSGA-II (29 generations)

SPEA2 (68 generations)

SMPSO (19 generations)

Figure 5.4-11 Final Pareto front approximations obtained by NSGA-II, SPEA2 and SMPSO after

1800 simulations

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Generation count

T
S

D
H

TSDH(SMPSO,NSGA-II)

TSDH(SMPSO,SPEA2)

TSDH(NSGA-II,SPEA2)

TSDH(NSGA-II,SMPSO)

TSDH(SPEA2,NSGA-II)

TSDH(SPEA2,SMPSO)

Figure 5.4-12 Two set difference hypervolume (TSDH) comparison between the algorithms

Finally we compare the three algorithms (two by two) using the two set

difference hypervolume metric – TSDH – (see Figure 5.4-12). The results only
confirmed our conclusions. The difference between the results obtained by the
algorithms is very small. For the first generations (until generation 7) SMPSO has
better results revealed by a higher TSDH value, especially against NSGA-II. SPEA2
also obtains better results compared to NSGA-II for the first generations.

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 26 of 65

5.4.3 Conclusions

Analyzing the Pareto front approximations obtained by the three algorithms we can
conclude that the differences are small. The biggest differences are not greater than
1% in terms of CPI, and usually reside between 0.1% and 0.01%, at the same
complexity. The difference between the algorithms comes in convergence speed.

From the convergence speed point of view, the particle swarm optimization
algorithm preformed the best, with a very high convergence speed. This confirms the
results obtained in [13]. From the two genetic algorithms NSGA-II converged faster
and found better solutions on GAP, but when GAPtimize was added SPEA2
performed better, both in terms of convergence speed and quality of solutions. In
terms off spread of the Pareto fronts approximations, SPEA2 was clearly the worse,
with many duplicates in the final population (archive).

An important conclusion we can draw from these experiments is that the
coverage metric can be misleading. It can show a big difference between the
algorithms while in real terms that is not the case. The problem is that it has no
threshold for domination, even if the difference on one objective is very small the
individual is still considered dominated. Coverage with such a threshold must be
considered for real problem optimizations. Such metrics are proposed in [15].
Hypervolume does help the user to observe the convergence speed of the algorithms.
It also gives some information about the quality of the solutions when multiple
algorithms are shown in the same figure and a single hypervolume reference point is
used. However, the difference between the values of the hypervolume should not be
considered. Hypervolume two set difference tries to give a little more information
about how much of the space is actually dominated by a single algorithm, but it can
also be misleading because the values are dependent on the position of the
hypervolume reference point and can not be taken into consideration very seriously.
Because the true Pareto front is unknown, finding a metric that correctly compares
algorithms is difficult. We recommend that the user should look at the obtained Pareto
fronts and draw a conclusion based on his/hers experience.

5.5 Automatically Generated Rules from Previous Exploration

This work extends the fuzzy logic integration with FADSE. The purpose is to obtain
the rules automatically from previous simulations. The idea is that a user can run a
design space exploration process on a single short benchmark. Obtain results for that
benchmark, extract rules and apply these rules on the design space exploration
process with multiple/long benchmarks. The second situation where this can be
applied is when a company builds a processor and performs the DSE. A client might
come and want to optimize that architecture for a specific task. Or the producer wants
to add a new feature to the design. The company could extract knowledge from its
previous exploration and offer it to the client so it can accelerate his DSE. From this
we can see two possible situations: when the data is extracted from a single
benchmark and then applied to multiple benchmarks (called by us “special to
general”) and when data is extracted from multiple benchmarks and applied to a
specific task.

The results from this paragraph are from our article "Boosting Design Space
Explorations with Existing or Automatically Learned Knowledge" [30].

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 27 of 65

5.5.1 Methodology

Ralf Jahr’s idea was to use machine learning techniques to calculate decision trees.
These trees were then translated into rules. This way a feed-back loop to
automatically make use of results obtained in prior DSE runs was created.

We performed tests with both implementations for the fuzzy mutation (see
4.3.2.2) and concluded that better results are obtained with the Gaussian distribution
of probability to use the information provided by the rules.

With this system, rules for the M-SIM simulator (see Chapter 6 for more
details) were generated. We had good results in terms of finding the rules, but they
were not used during a DSE process.

For FADSE we use a similar configuration as in previous chapters: population
size of 50 individuals, single point crossover with a probability of 0.9, fuzzy bit flip
mutation with a Gaussian probability to apply the fuzzy rules, the mutation
probability is set to 0.16. We are using the same selection of 10 benchmarks from the
MiBench suite.

5.5.2 Results

In our first test we start from a single benchmark, extract the rules and then run with
these rules on all the benchmarks. As the single benchmark we have selected
stringsearch. This benchmark is one of the smallest in the MiBench suite.

With the selected benchmark, we performed a DSE and obtained 1100 unique
individuals. We used the classification method presented in Chapter 5.5.1 and
extracted the rules.

Figure 5.5-1 Special to general experiment

With the obtained rules we run the full design space exploration (10

benchmarks). To provide a fair comparison we ran with and without the rules five
times up to generation 40. Each time we start from a random initial population.

In Figure 5.5-1 the average hypervolume obtained by the runs with and
without rules is presented. The run with rules obtains better results: it converges faster

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 28 of 65

and also reaches a hypervolume value higher than the one obtained by the run without
rules.

With this technique we have obtained a 50% reduction in the time required to
obtain the same quality of results. The DSE process with a single benchmark is very
quick. Then the run with the extracted rules converges much faster: at generation 11
the hypervolume obtained by the run with rules is equal with the hypervolume
obtained without rules after 24 generations.

The next possible situation is to start from a previous exploration and then
optimize the architecture for a certain benchmark. We used these rules to optimize
GAP for two application domains: one for image encoding/decoding with JPEG, the
other is encrypting/decrypting data with the Rijndael algorithm (AES) from the
MiBench suite.

Figure 5.5-2 Hypervolume JPEG

For both benchmarks FADSE is ran for 40 generations five times.
The average results for JPEG are shown in Figure 5.5-2, for Rijndael in Figure

5.5-3. The obtained results are again better than the ones obtained without rules. The
results are especially good for JPEG. The hypervolume enclosed by the individuals
found during the DSE process is higher with rules than without for all the generations.
Using rules leads to a faster convergence, and also the quality of the results obtained
with rules is never achieved (during the 40 generations) by the runs without rules.
From the convergence point of view, we can see in Figure 5.5-2 that the hypervolume
achieved with rules after 3 generations is achieved without rules only after 11
generations. In our situation a generation can last for about 3-4 hours, but with other
simulators this might mean days of simulation saved.

For Rijndael, the start is from a lower hypervolume, but with rules it manages
to overcome this drawback and to surpass the runs without rules. Again the
hypervolume reached for Rijndael with rules is never reached by the run without
rules.

Experiments with a constant probability to apply fuzzy rules were also
conducted, but the results were not so good. It seems that the high number of

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 29 of 65

available rules, combined with many membership functions associated to each
parameter, leads to very good results and helps maintaining the diversity. In Chapter 6
we observed that runs with constant probability work better when the rules do not
cover so much of the available parameters.

Figure 5.5-3 Hypervolume Rijndael

5.5.3 Conclusions

In this chapter, we proved that the fuzzy rules interface provided by FADSE can be
extended to use other interesting ideas. Rules are automatically generated from
previous explorations using data mining techniques and injected into FADSE through
the fuzzy rule system. This approach might be useful in several situations: when we
can run a single benchmark, extract the rules and then apply the learnt information in
a broader (more time consuming) design space exploration. The other situation is
when the architecture has already been optimized for general applications but we want
to optimize it for a specific application. The information gained from the previous
exploration can be used and it will accelerate considerably the DSE process.

5.6 Running with Hierarchical Parameters

When combining multiple code optimization passes, one has to keep in mind that the
design space to explore grows dramatically making it very hard to find very good
solutions. The design space increases even more if also the order of the passes is
considered. Nevertheless, it is possible that combinations of optimizations lead to
even higher performance gains compared to the performance gains of the individual
optimizations. Hence it is important to incorporate optimization techniques as already
mentioned at the start of this chapter. Beyond this, when analyzing the parameter
vector consisting of all parameters, one will come to the conclusion that it is a
common approach to have flags turning optimizations on and off. These flags have an
important role, as they can remove any influence and importance of the parameters for
an optimization if it is disabled. Hence the algorithm for the DSE should keep this in

Multi-objective Hardware-software Optimization of the Grid ALU Processor

Page 30 of 65

mind and not generate on and on individuals with different "genes" but the absolutely
same "phenotype", i.e. the same program binary.

In the case study all three optimizations (function inlining, static speculation,
qdLRU) can be turned off an on.

5.6.1 Methodology

This chapter presents preliminary results obtained with FADSE and hierarchical
parameters. We started developing the hierarchical parameters especially for this
experiment, but the work is still in progress at the time of writing this thesis.

We used the NSGA-II algorithm with the usual parameters: population size
100, mutation probability 1/number of parameters. Because we wanted to test the
efficiency of the hierarchical parameters we ran with and without this information.
We used bit flip mutation (1/number of parameters probability) and single point
crossover (0.9 probability to apply it) for the classical run. When running with
hierarchical parameters the difference is that we are using the special mutation and
crossover operator presented in Paragraph 4.2.2. We ran the experiment for 40
generations.

One benchmark was run until now: quick sort from the MiBench suite.

5.6.2 Results

The preliminary results obtained for quick sort are shown in Figure 5.6-1. It can be
seen that the run with the hierarchical parameters obtained better results than the run
without this information.

0.796

0.797

0.798

0.799

0.8

0.801

0.802

0.803

0.804

0.805

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Generation Count

H
y

p
e

rv
o

lu
m

e

No hierarchy information With hierarchy information

Figure 5.6-1 Hypervolume comparison between the run that considered the information about

hierarchical parameters and the one that did not

More simulations will be performed, on several benchmarks to draw a final

conclusion about the influence of these hierarchical parameters, but the results are
promising.

“The best way to escape from a problem is to solve it.”

Alan Saporta

Page 31 of 65

6 Multi-objective Optimization of the Mono-cores and
Multi-cores Architectures

This chapter continues the work performed by Dr. Árpád Gellért in his PhD thesis
[37] and some subsequent articles [38][39]. We took his manual design space
exploration performed on a Simultaneous MultiThreaded (SMT) architecture and
extended it to multiple parameters with the use of FADSE. Afterwards, we moved to
multi-core architectures as well.

We try to improve the results obtained by FADSE through different methods of
including domain-knowledge in the DSE algorithms.

6.1 M-SIM Simulator Overview

M-SIM [40] is a cycle accurate processor simulator based on SimpleScalar 3.0d [41].
It allows multi-threaded [42] micro-architectural simulation. The target architecture is
a superscalar Alpha AXP 21264.

M-SIM integrates the Wattch framework [43] for power consumption
estimation. It is able to run benchmarks from suites like: SPEC 2000 [44], SPEC
2006, MiBench, Mediabench, etc.

All our simulations were performed on the SPEC 2000 benchmarks. We have
selected six integer benchmarks (bzip, gcc, gzip, mcf, twolf and vpr) and 6 floating-
point benchmarks (applu, equake, galgel. lucas, mesa and mgird).

In this chapter, we are presenting evaluations on two versions of the M-SIM
simulator: version 2.0 and 3.0. The difference between them is that M-SIM 3 allows
multi-core simulation (only independent tasks).

The base configuration of the M-SIM simulator is depicted in Table 6.1-1.

Table 6.1-1 M-SIM baseline configuration

Execution unit Number of units Operation latency

intALU 4 1
intMULT / intDIV 1 3 / 20
fpALU 4 2

Execution Latencies

fpMULT / fpDIV 1 4 / 12
Superscalarity Fetch / Decode / Issue / Commit width = 4
Branch predictor bimodal predictor with 2048 entries
Selective Load Value

Predictor (SLVP)

1024 entries, direct mapped, access latency: 1 cycle, prediction latency: 3
cycles (2 cycles L1 data cache tagging + 1 cycle SLVP access)
Memory unit Access Latency

64 KB, 2-way associative L1 data cache 1 cycles
64 KB, 2-way associative L1 instruction cache 1 cycles
4 MB, 8-way associative unified L2 cache 6 cycles

Caches and Memory

Memory 100 cycles
Register File: [32 INT / 32 FP]*8
Reorder Buffer (ROB): 128 entries Resources

Load/Store Queue (LSQ): 48 entries

In Árpád Gellért PhD thesis, a novel selective load value prediction (SLVP)

mechanism is introduced [39]. The idea is to predict long latency instructions (loads)
that miss in the level 1 data cache. Árpád Gellért and his colleagues proved that the
SLVP can increase performance and reduce the energy consumption [38]. He has

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 32 of 65

performed a manual design space exploration is his work and only two parameters
(number of sets in the level 1 cache and the level 2 cache) were varied from the
baseline architecture, thus good configurations might not be found.

We decided to vary more parameters. They are depicted in Table 6.1-2 along
with the upper limits and the lower limits we have imposed.

Table 6.1-2 Parameters of the M-SIM simulators

Parameter Lower limit Upper limit

Sets 2 32768
Block size (bytes) 8 256 DL1 cache
Associativity 1 8
Sets 2 32768
Block size (bytes) 8 256 IL1 cache
Associativity 1 8
Sets 256 2097152

Block size (bytes) 64 256 UL2 cache
Associativity 2 16

SLVP (entries) 16 8192
Decode/Issue/Commit width 2 32
ROB size (entries) 32 1024
LSQ size (entries) 32 1024
IQ size (entries) 32 1024
Number of physical register sets (int/fp) 2/2 8/8
Integer ALU 2 8
Integer MUL/DIV 1 8
Floating point ALU 2 8
Floating point MUL/DIV 1 8

These 19 parameters generate a design space of over 2.5*1015 (2.5 millions of

billions) and makes an exhaustive search impossible, therefore FADSE was
employed.

6.2 Optimizing M-SIM 2 Architecture

The purpose of this work is to try to find better configurations than the ones obtained
by Árpád Gellért et al. Since only a few parameters were varied there, we want to
prove that the SLVP scheme leads to lower energy consumption at the same CPI for
other, closer to optimal, configurations. This work has been submitted to IET
Computers & Digital Techniques [45].

6.2.1 Methodology

Evaluating the architecture on a single benchmark takes a couple of hours. Thus, we
have decided to reduce the number of simulated dynamic instructions from 1 billion
to 500 million (first 300 million instructions are skipped). This means that 24 hours
are required to simulate a configuration (individual) on all the benchmarks.

Because of this change, we had to redo the manual exploration performed by
Árpád Gellért in his PhD thesis. We kept the same settings: 80nm CMOS technology
and a 1.2 GHz frequency for simulation. Gellért used IPC in his simulations we have
switched to CPI (1/IPC) to have both objectives (speed, energy consumption)
minimized.

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 33 of 65

The power modeling methodology used by the simulator is presented in more
detail in [43].

For FADSE, we used the following parameters: population size was set to 100
as recommended in [10]. For mutation, we used bit flip mutation with a probability of
1/(number of varied parameters). We varied 19 parameters and as consequence we set
the mutation probability to 0.05. Single point crossover was selected and the
probability to apply crossover was set to 0.9 (as specified in [10]). For selection the
binary tournament selection operator described in [10] was used. The mutation
operator was changed for the runs with fuzzy information as described in 4.3.2.2. We
limited the runs to 25 generations due to time constraints.

The number of generations was selected after analyzing the first runs taking
into consideration the following stop criterion: we observed the hypervolume
progress. If there was no progress for at least X generations, we considered that the
algorithm has converged. To measure the progress we used the following formula:

∑
=

−−=
X

i
ikk HHogressPr

1

)(

where Hk is the hypervolume of the current generation k, X ≤ k. When this sum is
smaller than a specified threshold θ the algorithm was stopped.

6.2.1.1 Manual Exploration

We doubled, halve, quarter and eighth the L2 cache size. For the L1 cache size we
divide it by 2, 4 and 8. The initial sizes are the ones considered in the baseline
architecture (see Table 6.1-1). We are using the following notations: mUL2_nDL1
means a configuration using m*4 MB 8-way associative unified L2 cache (m=2, 1,
1/2, 1/4, 1/8) and n*64 KB 2-way associative L1 data cache (n=1, 1/2, 1/4, 1/8).

This manual exploration is not the main purpose of this experiment but the
optimal configurations found are used in the following experiments.

In Figure 6.2-1, the relative CPI reduction obtained with a SLVP with 1024
entries is depicted against a configuration without the SLVP scheme. We can see
that the L2 cache can be reduced to its half size and the level 1 cache can have a size 8
times smaller and we still gain performance over the baseline architecture. In Figure
6.2-2 we can see that this reduction of the cache size leads to lower energy
consumption. From the CPI point of view, reducing the level two cache size, to more
that half the original size, decreases the performance.

-12

-10

-8

-6

-4

-2

0

2

4

6

2U
L2

_D
L1

2U
L2

_1
/2

D
L1

2U
L2

_1
/4

D
L1

2U
L2

_1
/8

D
L1

U
L2_

D
L1

UL2_
1/

2D
L1

UL2_
1/

4D
L1

UL2_
1/

8D
L1

1/
2U

L2
_D

L1

1/
2U

L2
_1

/2
D
L1

1/
2U

L2
_1

/4
D
L1

1/
2U

L2
_1

/8
D
L1

1/
4U

L2
_D

L1

1/
4U

L2
_1

/2
D
L1

1/
4U

L2
_1

/4
D
L1

1/
4U

L2
_1

/8
D
L1

1/
8U

L2
_D

L1

1/
8U

L2
_1

/2
D
L1

1/
8U

L2
_1

/4
D
L1

1/
8U

L2
_1

/8
D
L1

Cache sizes

C
P

I
re

d
u

c
ti

o
n

 [
%

]

Figure 6.2-1 Relative CPI reduction reported to UL2_DL1 without SLVP as baseline

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 34 of 65

 The same idea is used when we are looking at the energy reduction (see Figure
6.2-2). In this figure, the relative energy increase is shown against a configuration
without SLVP. The SLVP can be used in conjunction with smaller caches and
important energy reductions are obtained. It is interesting that the energy reduction is
lower in the case of reducing the L2 cache to 1/8 than in the case of quartering it. This
happens because when the L2 cache is reduced by a factor of 8, the static energy
decreases, but at the same time, the miss rate increases which leads to a higher energy
consumption. The optimal configuration from the energy point of view is: a quarter of
the L2 cache (2 MB) and an eighth of the L1 data cache (8 KB).

-10

-5

0

5

10

15

20

2U
L2

_D
L1

2U
L2

_1
/2

D
L1

2U
L2

_1
/4

D
L1

2U
L2

_1
/8

D
L1

U
L2_

D
L1

U
L2_

1/
2D

L1

U
L2_

1/
4D

L1

U
L2_

1/
8D

L1

1/
2U

L2
_D

L1

1/
2U

L2
_1

/2
D
L1

1/
2U

L2
_1

/4
D
L1

1/
2U

L2
_1

/8
D
L1

1/
4U

L2
_D

L1

1/
4U

L2
_1

/2
D
L1

1/
4U

L2
_1

/4
D
L1

1/
4U

L2
_1

/8
D
L1

1/
8U

L2
_D

L1

1/
8U

L2
_1

/2
D
L1

1/
8U

L2
_1

/4
D
L1

1/
8U

L2
_1

/8
D
L1

Cache sizes

E
n

e
rg

y
 r

e
d

u
c
ti

o
n

 [
%

]

Figure 6.2-2 Relative energy reduction reported to UL2_DL1 without SLVP as baseline

From this experiment, we extracted the optimal configurations (from our point

of view) we have found. The best configuration in terms of CPI is 2UL2_DL1. The
best in terms of energy consumption is 1/4UL2_1/8DL1. We constructed a Pareto
front with these configurations and chosen some configurations that are good taking
into consideration both objectives, they are: 1/2UL2_1/2DL1 and 1/2UL2_1/4DL1.
We will use these configurations in our future experiments as starting points for the
automatic design space exploration.

6.2.1.2 Running Without Any Information

We first started FADSE together with M-SIM2 simulator with no prior information.
FADSE was started from a random initial population. We varied the parameters
described in Table 6.1-2 with the hope to find better configurations than the ones
found by manual exploration. To avoid infeasible configurations (either impossible or
known to provide bad results) we have used the following constraints:

UL2 > DL1 + IL1
UL2_bsize ≥ DL1_bsize
UL2_bsize ≥ IL1_bsize

where UL2_bsize, DL1_bsize and IL1_bsize are the block sizes for the unified L2
cache, L1 data cache and L1 instruction cache, respectively.

The size of the caches was also limited between the following borders:

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 35 of 65

DL1: 16 KB - 1 MB
IL1: 16 KB - 1 MB
UL2: 1 MB - 8 MB

The design space obtained with these restrictions had a size of 3.8*1013.
While analyzing the results (see 6.2.2) we have observed that the constraints

used were too restrictive and that FADSE was not able to explore regions with low
energies (smaller caches). Because of this, we relaxed the borders of the caches
allowing FADSE to search in a larger space. The minimum cache capacities allowed
were reduced:

DL1: 4 KB - 1 MB
IL1: 8 KB - 1 MB
UL2: 256 KB - 8 MB

The design space is reduced to 3% of the initial space, meaning 7.7 *1013 (77
thousands of billions) feasible configurations.

For all the runs we forced the initial population to be comprised of only
feasible individuals and the offspring populations to have at least 80% feasible
individuals.

6.2.1.3 Running With an Initial Population

FADSE was started with some good configurations inserted in the initial population.
The relaxed borders presented in section 6.2.1.2 are used in this experiment. The main
idea is to start from a better point in space hoping that better configurations could be
reached in the same amount of generations, or better results could be reached faster.

We selected the optimal configurations, found during the manual exploration
(see 6.2.1.1), and inserted them in the initial population. From Figure 6.3-1 and Figure
6.2-2 we concluded that the best configuration in terms of CPI is 2UL2_DL1, the best
configuration in terms of energy consumption in 1/4UL2_1/8DL1. We also selected
other two configurations which are optimal from both CPI and energy viewpoints:
1/2UL2_1/2DL1 and 1/2UL2_1/4DL1. The vicinities of these four configurations
were inserted. The vicinities were obtained by varying the SLVP size, L1 data cache
size and L2 unified cache size one step up and down.

FADSE was started again with our 24 selected configurations: the “optimal”
manual configurations and their vicinities (some of them are overlapped). The rest of
the population (up to 100 individuals) was filled with random individuals.

6.2.1.4 Running With Fuzzy Rules

For this set of experiments, we developed some fuzzy rules derived from our
experience in computer architecture design and started FADSE with them. We tested
both mutation operators (constant/Gaussian probability to apply fuzzy information)
implemented in FADSE when fuzzy information is available. FADSE was started
from a random population and with the same relaxed borders used in previous
chapters. The rules used in the experiments are:

IF Number_Of_Physical_Register_Sets IS small/ big THEN Decode/ Issue/
Commit_Width IS small/ big
IF SLVP_size IS small/ big THEN L1_Data_Cache IS big/ small

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 36 of 65

The rules are presented here in a simplified form. In the FCL file they are
described using 14 rules. We used 2 membership functions for each parameter, one
associated to the linguistic term small, the other one to big.

Virtual parameters were used to describe the L1 data cache (see Chapter
4.3.2.3).

The Mamdani inference system was used (as described in 4.3.1).

6.2.2 Results

0.25

0.3

0.35

0.4

0.45

0.5

7.00E+09 1.20E+10 1.70E+10 2.20E+10 2.70E+10 3.20E+10 3.70E+10 4.20E+10 4.70E+10

Energy

C
P

I

Initial run Run with relaxed borders

Run with initial good configurations Manual

Figure 6.2-3 Pareto fronts comparison of the first runs

In Figure 6.2-3 the first runs are compared: initial run, the run with relaxed

borders and run with good individuals inserted in the first population. In terms of CPI
all the runs obtain better results than the manual run. From an energy point of view
some of the configurations found during the manual exploration are better than the
ones obtained during the initial run (before relaxing the constraints – see Section
6.2.1.2).

Relaxing the borders leads to very good results. The found configurations are
better on both objectives compared with the manual exploration. The results are
evenly distributed along the Pareto front approximation.

The last run depicted in Figure 6.2-3 is the run with initial good
configurations. It finds better configurations than the manual exploration and
outperforms the initial run, but it is not able to find good configurations from the
energy point of view as the run with relaxed borders. It can be observed that the run
with initial good configurations finds better results in the in the vicinity of energy
1.20E+10 [cyclesW ⋅].

The run with initial good configurations does not have such a good
distribution of the results (is not able to search the area with low energy) because of
the loss in diversity. At the beginning of the algorithm, the initial good configurations
are much better than all the random individuals inserted in the population. In the

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 37 of 65

following generations only these good configurations survive, but they are not very
different because they were obtained by varying only 2 from the total of 19
parameters. The mutation operator, with a probability of 0.05 of changing one
parameter, is not able to change too much the individuals and, as a result, the
algorithm stops in a local minimum. We analyzed the evolution of the Pareto front
approximation over the generations to reach this conclusion.

0.25

0.3

0.35

0.4

0.45

0.5

7.00E+09 1.20E+10 1.70E+10 2.20E+10 2.70E+10 3.20E+10 3.70E+10 4.20E+10 4.70E+10

Energy

C
P

I

Run without fuzzy Run with fuzzy Manual

Figure 6.2-4 Pareto front comparisons between the run with fuzzy rules and the run with relaxed

borders

From the previous results, we selected the run with relaxed borders as the

reference run (called run without fuzzy information in the future) because it obtained
the best overall results. It must be noted that all the runs except the first run use the
relaxed borders, but are called differently.

In Figure 6.2-4, we compared the run without fuzzy information with the run
with fuzzy information (constant probability to apply the fuzzy rules). The run with
fuzzy information provides better results especially in the vicinity of energy 1.20E+10

[cyclesW ⋅].
We also compared the run with fuzzy rules with the one with initial good

configurations and we observed that the later obtains a few individuals which are
slightly better.

The last Pareto front approximation comparison is made between the two
fuzzy runs (see Figure 6.2-5). In this experiment the run with a constant probability to
apply the fuzzy rules provides better results, especially in the area with low energies.
We can assume that here, like in the run with initial good configurations, there is a
loss in diversity. Having a chance of around 80% of applying the rules during the first
generations, might lead to very similar individuals. Of course, the situation is not as
bad as with the run with initial configurations. In this situation the rules affected only
4 parameters (cache parameters and register file size), as in the run with initial good
configuration 16 of them were fixed for the manually inserted individuals.

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 38 of 65

0.25

0.3

0.35

0.4

0.45

0.5

7.00E+09 1.20E+10 1.70E+10 2.20E+10 2.70E+10 3.20E+10 3.70E+10 4.20E+10 4.70E+10

Energy

C
P

I

Fuzzy with constant probability Fuzzy with Gaussian probability Manual

Figure 6.2-5 Pareto fronts comparison between the runs with fuzzy rules

0.54

0.56

0.58

0.6

0.62

0.64

0.66

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Generation count

H
y

p
e

rv
o

lu
m

e
 [

%
]

Initial run
Run with relaxed borders
Run with initial good configurations
Run with fuzzy with constant probability
Run with fuzzy with Gaussian probability

Figure 6.2-6 Hypervolume comparison

As a final comparison, we computed the hypervolume obtained by all the runs

during the DSE process (see Figure 6.2-6). This graph gives us information about the
convergence of the algorithm and about the quality of results. Except the initial run,
the algorithm tends to stop the rapid evolution after generation 15.

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 39 of 65

After analyzing the evolution of the hypervolume values, we can conclude
that:

- The initial run with restricted borders is not able to find so good
configurations, the volume covered by the obtained Pareto front
approximation is the smallest;

- Running with relaxed borders increased the quality of results considerably
even if the design space is larger by a factor of two, from 3.8*1013 to
7.7*1013. This is the reason we have decided to use the relaxed borders in
all the following experiments presented in this chapter;

- Starting with some initial good configuration can lead to a fast
convergence and good results. Still, we observed that the results where
grouped only on a part of the objective space, therefore this run falls in a
local minimum. This happens because the initial configurations we have
provided are very similar. From the 19 parameters we vary, only two of
them differ between configurations (number of sets in level 1 and level 2
cache). Problems can be observed at generation 14 and especially after
generation 23 where the hypervolume value starts to decline;

- Running with fuzzy rules, with a constant probability to apply them, leads
to the best results, both in terms of convergence speed and quality of
results;

- Switching to a Gaussian distribution of probability to apply the fuzzy rules
leads to worse results. We concluded that the high probability to apply the
fuzzy rules lead to a loss in diversity because we have only a few rules
with only two membership intervals associated. This means that all the
individuals will have the affected parameters very similar. This behavior is
enforced for the first generation and the fall back mutation operator is not
able to maintain the diversity. In Paragraph 5.5, we also used both methods
to compute the probability to apply the fuzzy rules. In that case, better
results were obtained with the Gaussian probability. We can explain this
through the fact that there were many rules affecting many parameters and
with many membership intervals (associated linguistic terms). So, even if
the rules pushed the configurations in certain areas of the design space, the
diversity of the rules meant that the configurations resulted after the
transformation were different.

If we look at the value of the hypervolume at the first generation, for all the
algorithms we can conclude that some extra knowledge makes the algorithm start
from a better initial population (obvious for the run with initial configurations). Even
from this, the algorithms do converge faster.

In terms of time reduction, when using fuzzy rules, we can observe that the
hypervolume, obtained by the run with extra knowledge at generation 15, is reached
by the run with relaxed borders only at generation 24. Running a generation takes
around 24 hours on 96 cores belonging to an Intel Xeon powered HPC system,
running at 2GHz. This means that the time required to reach the same quality of
results is obtained 9 days earlier. Running with fuzzy rules thus lead to the same
quality of results 36% faster, this is a great improvement over the base algorithm.
Even more, the hypervolume reached by the run with fuzzy rules is never reached by
the other runs during the 25 generations.

To reach generation 25 all the runs evaluate around 2200 individuals. This
means a reuse factor of 12% which translates in time reduction for the DSE process
(almost three days faster than without a database for 25 generations). The reuse is

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 40 of 65

quite low compared with what we have obtained in Chapter 5 where a reuse of over
60% has been obtained. The lower reuse factor is determined by the huge design
space which makes the algorithms capable of generating new individuals at each
generation.

6.2.3 Conclusions

From the manual exploration, we can conclude that the integration of the SLVP in the
architecture lead to a better energy consumption at the same CPI because the cache
sizes can be reduced. We analyzed the results obtained by the automatic design space
exploration process and drawn the same conclusion: with an integrated SLVP the
caches can be smaller than in the baseline architecture.

FADSE was able to find good configurations, even if the number of simulated
individuals was 2200 from a total of 77 thousands of billions constrained design space
(about 3*10-11%), better than the ones obtained by Árpád Gellért.

Adding extra knowledge improves the results: it helps the algorithm to find
better results and also to find them faster. Starting from an initial population with
known good configurations, leads to a higher convergence speed. Here some
problems were encountered: if the initial configurations are not diverse enough the
algorithm might eventually fall in a local minimum. Fuzzy information can provide
good results if used wisely: if there are few rules available the constant probability
should be used. If the rules have many membership intervals then a Gaussian
probability to apply them might lead to better results.

6.3 Optimizing M-SIM3 Architecture

Our next objective was to move to a multi-core architecture. We analyzed many
simulators (see Paragraph 6.4) that support multi-core modeling but we were unable
to find one that outputs power consumption or area integration (besides IPC/CPI).
Since we are focusing on multi-objective optimization we choose M-SIM 3 as
simulator since it is the only one that provides multiple (conflicting) objectives.

The parameters for the M-SIM 3 simulator are the ones presented in Table
6.1-1 and Table 6.1-2. For the multi-core configurations we have two identical cores.
As objectives, we try to optimize the same ones as for M-SIM 2 (see Paragraph 6.2):
energy and CPI.

6.3.1 Methodology

The same methodology as for M-SIM2 has been used:
- NSGA-II algorithm;
- Population size 100;
- Bit flip mutation with a probability of 0.05;
- Single point crossover with a probability to apply crossover of 0.9.
First, we ran M-SIM 3 as a single core with the same benchmarks as M-SIM

2. The difference from the previous explorations is that we forced only the first
generation to be comprised from feasible individuals. For the rest of the design
process we are not forcing any number of feasible individuals (individuals that respect
all the constraints) in the offspring population.

The next step was to move to a multi-core architecture. We paired the
benchmarks used in the previous section in the following way: {twolf, vpr}, {applu,
equake}, {bzip2, gcc}, {galgel, lucas}, {gzip, mcf}, {mesa, mgrid}. The benchmarks
were selected as in [39] with the exception that parser is replaced with mcf in our

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 41 of 65

work due to some incompatibilities with the HPC system used during simulation. The
SLVP implementation has not been used because it is not integrated into M-SIM 3
yet.

The connector implemented for M-SIM 3 (with the help of student Camil
Băncioiu) can be configured to accept homogeneous and heterogeneous
configurations. For a homogeneous multi-core, the user has to specify a single set of
parameters and then the connector applies the same values for all the cores. If a
heterogeneous architecture is required, the user has to specify all the parameters in the
input XML file and they will be varied by FADSE. Since the design space is huge and
running a single generation took more than 36 hours, we decided to run this
experiment while simulating a homogeneous multi-core, to reduce the number of
possible configurations.

6.3.2 Results

In our first test we ran with M-SIM 3 as single core. In Figure 6.3-1 the evolution of
the hypervolume can be seen. The shape obtained is slightly different from what we
have obtained in all our previous explorations. For the first 5 generations the
evolution of the hypervolume is not typical. We examined the individuals from the
offspring population and concluded that over 60% of them are infeasible. This
percentage decreases to 50% at the last generation, but still many are infeasible. This
means that the number of offspring, from which the algorithm can choose good
individuals, is not very high, which translates in a lower convergence speed. The time,
required to evaluate an entire generation, is also reduced because the individuals are
tested if they respect the rules before sending them to evaluation. The small number
of feasible individuals explains the results from Figure 6.3-2. The number of accepted
individuals in the next population is depicted against the number of new individuals
generated (infeasible included). We can observe that the number of accepted
individuals is not larger than 30, even at the second generation (the first generation is
always 100 since all the individuals form the next parent population).

0.7

0.705

0.71

0.715

0.72

0.725

1 3 5 7 9 11 13 15 17 19 21 23

Generation count

H
y

e
rv

o
lu

m
e

 [
%

]

Figure 6.3-1 Hypervolume obtained for the M-SIM 3 configured as a mono-core

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 42 of 65

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Generation Count

N
u

m
e
r

o
f

In
d

iv
id

u
a
ls

New individuals Accepted individuals

Figure 6.3-2 Number of unique offspring individuals versus the number of accepted individuals

in the next population – mono-core run

This run with a mono-core processor on M-SIM 3 was our first experiment

with this simulator and with constraints in general. It determined us to implement a
technique to force a certain percentage of feasible individuals in the offspring
population.

The next experiment presented in this chapter is the exploration of a dual-core
architecture. In this experiment, we forced the minimum feasible number of
individuals in the offspring population to 80%. The evolution of the hypervolume
presented in Figure 6.3-3 shows the convergence of the algorithm. Compared to
Figure 6.3-1, the evolution is more smoothly. A difference from previous exploration
can be seen when comparing Figure 6.3-2 with Figure 6.3-4. In Figure 6.3-4 around
60 individuals are accepted in the next population during the first generation. Only
after 13 generations the number decreases to the number of individuals accepted in
the previous exploration since the second generation.

In this exploration we observed an 18% reuse. The lower reuse is explained by
the very large design space. It is visible that in Figure 6.3-4 the algorithm produces
almost 80 new individuals even at the last generations.

With this last exploration we proved that FADSE can be used with multi-core
simulators and can run for extended periods of time (over a month).

0.39

0.395

0.4

0.405

0.41

0.415

1 3 5 7 9 11 13 15 17 19 21 23 25

Generation Count

H
y

p
e

rv
o

lu
m

e

Figure 6.3-3 Hypervolume obtained for the M-SIM3 configured as a multi-core

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 43 of 65

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Generation Count

In
d

iv
id

u
a

ls

New individuals Accepted individuals

Figure 6.3-4 Number of unique offspring individuals versus the number of accepted individuals

in the next population – multi-core run

6.4 Multi-core Simulators Considered for Optimization

Multiple multi-core simulators were considered for an optimization using FADSE.
We have analyzed all these simulators to try to find their strong points and their
weaknesses. An overview is done in this chapter.

6.4.1 UNIted SIMulation Environment

UNIted SIMulation environment (UNISIM) [46] was the first multi-core simulator we
used. The UNISIM simulator contains two major parts: a cycle-by-cycle simulator
and a transaction level modeling (TLM) simulator.

The cycle-by-cycle simulator models a multi-core 32 bit PowerPC 405 RISC
architecture with a 5 stage pipeline and separated data and instruction caches (Harvard
architecture). The cycle-by-cycle simulator could not be configured using a command
line. To influence the parameters (cache size, number of CPUs, etc.) the code had to
be changed. We have developed our custom tool that could receive parameters from
an external source generate the required code automatically, inject it into the
simulator source code, compile the simulator and then run the configuration with the
specified benchmark.

To run parallel benchmarks UNISIM supports the POSIX Pthread library.
With this we were able to write our own test programs. We implemented different sort
algorithms (quick sort, merge sort) and matrix multiplication methods in a parallel
fashion. Given that, we implemented new coherency protocols (MSI), besides the
already existent ones (MESI), we also needed some applications to test the
correctitude of the implementation. For this, we developed a test application that was
preserving the order of operations in mathematical computation using threads: the
adding thread had to wait for the multiplying thread, etc.

The TLM simulator provided a very fast simulation. On this version we were
able to run benchmarks from the PARSEC [47] and SPLASH-2 [48] suites.

We did not use UNISIM since it does not provide any information about the
power consumption or area integration. Integrating such a functionality proved to be
difficult.

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 44 of 65

6.4.2 M5

M5 [49] is a well known full system multi-core simulator. It was recently merged
with the GEMS simulator and called gem5.

M5 is able to simulate Alpha architectures. Supported ISAs are: Alpha, MIPS,
Sparc. It can run in two modes: full system and application only. In full system it is
able to boot the Linux operating system. It supports different levels of detailed
simulation: from very fast inaccurate simulation to very accurate (and slow). These
levels of detail can be changed during a simulation process so, for example, the boot
of the Linux kernel can be simulated with low accuracy but when the benchmark is
started the accuracy is increased.

M5 can simulate multi-computer systems, tied through networks. We were
able to run the SPLASH-2 suite of benchmarks in the application only mode. On the
full system simulator we also ran the SPLASH-2 benchmarks and our own
applications.

M5 lacks the support for power consumption estimation or other objectives
besides the speed related ones.

A FADSE connector for M5 has been developed.

6.4.3 Multi2Sim

Multi2Sim simulates a multi-core multi-threaded superscalar pipelined architecture. It
supports the x86 ISA which allows it to run benchmarks compiled. It is an application
only simulator (no full system) and supports most of the benchmarks suites available:
SPLASH2, PARSEC, SPEC, etc. It is also able to simulate OpenCL programs.

We integrated Multi2Sim with FADSE using a connector.
Multi2Sim does not include any power or area of integration outputs but the

authors provide a list of outputs that can be used in conjunction with McPAT [50] to
extract these metrics. McPAT is a library which is able to provide information about
power consumption, area integration for multi-core or System on Chip (SoC)
architectures. It is easily configured through a XML interface. We developed a tool
that can extract metrics from the outputs of the Multi2Sim and insert them
automatically in the XML configuration file of McPAT. The problem is that
Multi2Sim outputs only dynamic information about the accesses in caches, memory,
and not about the actual structure of system architecture. This meant that we had to
use the default Alpha architecture implemented by McPAT as a base architecture and
insert only the number of accesses. This gave us an estimation of the dynamic power
consumed by the simulated architecture, but not more. Our script is limited, for the
time being, at single-core architectures, but a multi-core implementation could be
easily provided.

6.4.4 SuperESCalar Simulator

SuperESCalar Simulator (SESC) [51] multi-core capable cycle level accurate
simulator developed at the University of California. The advantage of this simulator is
that it integrates with HotSpot [52], Wattch [43] and Cacti [53]. Through this tools it
can provide to the user (besides the usual CPI) the power consumption and area
required by the configuration.

The RedHat Linux based HPC computer from “Lucian Blaga” University of
Sibiu, on which we ran the simulations, was not supported by the SESC simulator.
Because of this, the project was abandoned and no connector was written for it.

Multi-objective Optimization of the Mono-cores and Multi-cores Architectures

Page 45 of 65

6.4.5 SCoPE

SCoPE is a simulator used together with M3Explorer. A connector has been
developed by the authors of SCoPE and M3Explorer for the M3Explorer DSE tool.
Since FADSE is similar at the interface level with M3Explorer, a FADSE connector
for the SCoPE simulator would require very little time to develop. Since SCoPE can
simulate different architectures from multi-cores to multi-processor SoCs and it
outputs performance metrics and power consumption it was a good candidate for a
DSE with FADSE. Another advantage is that SCoPE is a TLM simulator meaning
that it simulates extremely fast, a good feature for the lengthy design space
explorations.

Together with the student Camil Bancioiu we tried to use this simulator in our
work. We were able to describe our own extensible multi-core architecture based on
ARM architecture. On this architecture, we ran the single-threaded MPEG
benchmark. When we extended the work to multi-core architectures we encountered
errors in the code. At a closer analysis of the code, we observed that the current
version of the simulator did not support data caches, a feature very important in our
opinion. We contacted the authors of the SCoPE simulator and a new version is in
development that will solve these problems.

6.4.6 Graphite

Graphite is a simulator for multi-core architectures. The novelty of this simulator
compared to the previous analyzed ones is the distributed simulation. Its scope is to
allow the exploration of systems with dozens to thousands of cores. The simulator
creates a thread for each core in the simulator. This pool of threads is then distributed
on all the cores from all the hosts in the network.

We are currently working in integrating this simulator with FADSE.

“An ounce of action is worth a ton of theory.”

Friedrich Engels

Page 46 of 65

7 Multi-objective Optimization of System on Chip
Architectures

This chapter presents our proposed method for performing an automatic application
driven design space exploration for System-on-Chip (SoC) designs. We connect
FADSE with UniMap [54], a SoC simulator. The goal is that, for a given application,
to automatically find the best SoC architecture, in a multi-objective way. We have
three objectives: SoC energy consumption, SoC area and application runtime.

With UniMap, we model and simulate an entire System-on-Chip, made of tens
of heterogeneous Intellectual Property (IP) cores, mapped onto the tiles of a Network-
on-Chip interconnection network.

We propose a practical DSE workflow, which allows us to determine, for any
particular application, the SoC designs that consume the smallest amount of energy,
occupy the smallest area and allow the application to execute the fastest. The DSE
process is performed with multi-objective algorithms from two classes. Having two
genetics and two bio-inspired algorithms, we compare four multi-objective techniques
aiming to find the algorithm that performs the best.

Figure 6.4-1 The scheduling, application mapping and routing problems [55]

The APCG is used as input for an application mapping algorithm, which maps

the given IP cores onto the nodes of a given NoC architecture, such that different
metrics of interest are optimized. Obviously, the mapping algorithm must be aware of
the routing algorithm, i.e. how data is sent from one network node to another.

7.1 UniMap Overview

UniMap integrates different mapping algorithms and also a Network-on-Chip
simulator. Some algorithms are available in literature and some were improved by the
author. The NoC simulator is also developed by Ciprian Radu. UniMap was
developed so that different algorithms may be evaluated and optimized in a unified
manner, on multiple NoC designs. If a NoC architecture is given, UniMap can be used
to find the best mapping in terms of energy consumption, network latency, etc. for
any parallel application.

Multi-objective Optimization of System on Chip Architectures

Page 47 of 65

7.2 Design Space Exploration Workflow

Ideally would be to search for the best NoC architecture for every possible application
mapping. This is actually the exhaustive approach in which we would take every
possible placement of IP cores onto the NoC nodes and for each placement we would
try all the available NoC designs and evaluate their performance using ns-3 NoC,
UniMap’s simulator. The DSE mechanism described is practically a DSE in an inner
DSE because the UniMap DSE includes FADSE. Our DSE workflow can be made
faster by serializing FADSE DSE after UniMap DSE. By doing so, we evaluate each
mapping on just one SoC design. UniMap will output a Pareto front and FADSE will
take the mappings from this front and search for each one the best System-on-Chip.

FADSE
UniMap

mappings

database

UniMap

NoC

application

mapping

UniMap

NoC simulator

Select

mapping

Save best

mappings

UniMap

IP cores

database

Select

IP cores

Simulate SoC

architecture

Output:

- application runtime

- SoC energy

- SoC area
Figure 7.2-1 Application driven DSE workflow for SoC designs

 We can still reduce the time complexity of our DSE approach by letting
UniMap use an analytical model for evaluating the application mappings, on a default
System-on-Chip design. UniMap no longer uses a NoC simulator to evaluate
mappings. This DSE workflow is less accurate than the previous two, but it is more
feasible. Using an analytical model, we can evaluate a mapping in less than a second.
With a bit energy model we estimated the NoC communication energy on our HPC
system.

Multi-objective Optimization of System on Chip Architectures

Page 48 of 65

 Our Design Space Exploration workflow begins from UniMap, which maps
applications onto Network-on-Chip designs. Each mapping is evaluated with an
analytical model [56] that estimates the NoC communication energy. For every
application, UniMap saves the best mappings it finds into a database.

FADSE then searches, for each application, the best System-on-Chip
architecture. The first ten best mappings1 found with UniMap are used by FADSE (for
each application). These best mappings are taken from all best mappings obtained
with all UniMap heuristic algorithms: Simulated Annealing, Branch and Bound,
Optimized Simulated Annealing and Elitist Genetic Algorithm and Elitist
Evolutionary Strategy, with all their variants [55].

Then we use FADSE to do a Design Space Exploration, guided by a multi-
objective algorithm. Different System-on-Chip designs are simulated by FADSE. The
mapping provided to FADSE says where each IP core is placed onto the NoC. It also
says what type of IP core is associated to each task. However, FADSE will
automatically simulate with other compatible IP core types as well. After it chooses
the core types, FADSE generates a System-on-Chip by topologically placing the cores
onto the NoC. FADSE automatically configures the Network-on-Chip. After that,
UniMap’s ns-3 NoC simulator is called by FADSE. This simulator measures
application runtime, SoC energy and SoC area (our three DSE objectives).

We work with the E3S [57] IP core library. It provides information regarding
the power consumed by each IP core for running a particular application task. IP core
area and power consumption, while the core is idle, are also specified.

Our UniMap NoC simulator integrates ORION 2.0 [58]. This allows us to
estimate Network-on-Chip power and area. We consider both leakage and dynamic
power, for routers and communication links. In a similar way, the area occupied by
the NoC is computed as the sum of routers’ and links’ area.

Each application runs for a given number of CTG iterations. Application
runtime is the simulation time required by the benchmark to finish. A CTG iteration
means running a benchmark until it is completed. Several iterations mean that we
restart the benchmark after a specified (in the benchmark description) amount of time.
An example can be for MPEG where a new frame has to be processed every 1/24
seconds. This might lead to congestions in the network. The number of CTG
iterations is determined empirically such that the simulations run fast enough that our
DSE finishes in a reasonable amount of time.

Our proposed DSE workflow outputs a Pareto front with the near optimal
System-on-Chip architectures found for a given application.

The following section describes our experimental methodology. We give
details regarding how exactly we did the simulations, what benchmarks we used, the
varied design parameters and how we configured UniMap and FADSE. During our
DSE process we did not modify the Network-on-Chip topology. This is the NoC
element that is essentially used by the mapping algorithms. Modifying it would create
inconsistencies. Network-on-Chip application mapping is by definition topology
dependent. Nevertheless, our workflow might be applied to different NoC topologies.
This would have the advantage of finding the most suitable NoC topology, as well. In
order to do so, we would need to adapt our mapping algorithms for these other
Network-on-Chip topologies as well.

1 Depending on resources available, a bigger number of best mappings may be used

Multi-objective Optimization of System on Chip Architectures

Page 49 of 65

7.3 Methodology

Since we present in this thesis only preliminary results, we worked with just with four
benchmarks: telecom, MPEG-4, H.264 (CTG 0) and VOPD (CTG 0). We plan to do
more simulations in the future and to use more applications.

Using all application mapping algorithms from UniMap, we selected the first
ten best mappings that we found for each application mentioned above. telecom is a
benchmark with 30 IP cores, which are mapped on a 6x5 2D mesh Network-on-Chip.
MPEG-4 has 12 IP cores and H.264 (CTG 0) and VOPD have 16. MPEG-4 is mapped
onto a 4x3 2D mesh and H.264 (CTG 0) and VOPD use a 4x4 2D mesh.

A Communication Task Graph (CTG) describes an application though its
traffic pattern. The CTG can be reiterated multiple times. By doing so, we can
simulate successive executions of the application. Since we only afforded to run each
benchmark for less than ten minutes, we chosed the number of CTG iterations
accordingly. The following table illustrates this aspect.

Benchmark CTG iterations

telecom 10
MPEG-4 2

H.264 (CTG 0) 4
VOPD (CTG 0) 1

We worked with the IP core library provided by E3S. It contains a total of 34

cores. telecom is an E3S benchmark. As such, we know exactly what cores can
execute each of its tasks. There are on average 20 core types for each task of the
telecom application. For the other three benchmarks, which are not from the E3S
suite, we consider that any IP core from the E3S library can execute any task of our
non E3S benchmarks. This is possible because E3S considers for each IP core a
generic task, for which we know the execution time and power consumption.

We have considered the following Network-on-Chip parameters: network
clock frequency, input buffer size, flit size, packet size and routing protocol. The
NoCs frequency is varied from 100 MHz to 1 GHz, using a step of 100 MHz. The
input buffers can uniformly hold from one to ten flits. The flit size is in bytes, starting
from 4 and going up to 256, using a geometric progression with ratio two. The packet
size is minimum two flits and maximum ten flits. The routing protocol can be either
XY or YX (both are variants of Dimension Order Routing). We automatically set the
NoC bandwidth to a value that allows one flit to be transmitted in one Network-on-
Chip clock cycle.

The next table presents the size of the search space for each benchmark. We
have a maximum of N = 12600 possible NoC designs but, the search space generated
by the IP core types (C) is considerably much bigger.

Benchmark Search space size

telecom 12600.2030 ≈ 1.35.1043
MPEG-4 12600.3412 ≈ 3.1022

H.264 (CTG 0) 12600.3416 ≈ 4.1028
VOPD (CTG 0) 12600.3416 ≈ 4.1028

Multi-objective Optimization of System on Chip Architectures

Page 50 of 65

We configured our Framework for Automatic Design Space Exploration to
work for this research with four multi-objective techniques: NSGA-II, SPEA2,
SMPSO and OMPSO. We set all algorithms to stop after 50 generations.

NSGA-II was set to work with a population of 100 individuals. Single point
crossover, bit flip mutation and binary tournament selection were the well known
genetic operators that we used. The benchmark telecom has the highest number of IP
cores: 30. We also vary with FADSE five NoC parameters. Thus, our largest
chromosome has 35 genes. This suggests a mutation probability of 3% (1/n, where n
is the number of parameters). The crossover probability was set to 90%.

SPEA2 was configured exactly like NSGA-II and the archive size was set to
100.

In the same manner, SMPSO and OMOPSO have an archive of size 100 and
they work with a swarm of 100 particles.

7.4 Results

In this paragraph we present the results obtained using the DSE technique described
in the previous paragraph. Due to time required for simulation we were able to
explore ten mappings only on the telecom benchmark. On the other benchmarks we
were able to explore a single mapping: the best one found analytically.

7.4.1 Design Space Exploration on the Telecom Benchmark

We ran telecom on the first ten best mappings and computed the hypervolume for
each one and then we averaged the results. The results are presented in Figure 7.4-1.
From this metric we can conclude that the particle swarm optimization algorithms
(OMOPSO and SMPSO) converge faster than the genetic ones (NSGA-II and
SPEA2), but the results obtained after 9-10 generations by the genetic algorithm are
better from the quality point of view. It is interesting to observe that the algorithms
from the same class (genetic/PSO) obtain similar results. It is more important the type
of the algorithm than the actual specific implementation. The two genetic algorithms
have similar results with a bit faster convergence for the NSGA-II algorithm, but the
final hypervolume value is slightly better for SPEA2. SMPSO has better results than
OMOPSO from both convergence speed and quality of results point of view.

0.17

0.19

0.21

0.23

0.25

0.27

0.29

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Generation Count

A
v

e
ra

g
e

 h
y

p
e

rv
o

lu
m

e

NSGA-II

SPEA2

SMPSO

OMOPSO

Figure 7.4-1 Average hypervolume over all ten best telecom mappings

The next step was to use the coverage metric to compare the results obtained

by the algorithms. We performed comparisons between all the algorithms on all the

Multi-objective Optimization of System on Chip Architectures

Page 51 of 65

benchmarks. Due to space constraints we present only the comparison performed
between a genetic algorithm (SPEA2) and a particle swarm optimization (OMOPSO).
The results are depicted in Figure 7.4-2.

0%

20%

40%

60%

80%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

C
o

v
e

ra
g

e

Coverage(SPEA2,OMOPSO) Coverage(OMOPSO,SPEA2)

Figure 7.4-2 Coverage comparison between SPEA2 and SMPSO on the telecom benchmark

It can be seen that the results obtained by the genetic algorithm clearly

dominate the results obtained by the PSO algorithm. From the other comparisons
using the coverage metric (not shown here) we observed that SPEA2 is better than
NSGA-II and that from the PSO algorithms OMOPSO has a better coverage (different
than the information given by the hypervolume).

Since the hypervolume metric is mostly used for measuring convergence
speed and we proved in previous experiments that coverage can be misleading, we
decided to compare the obtained Pareto fronts approximation. The results are shown
in Figure 7.4-3. We took the best results found by all the algorithms and kept only the
nondominated points. We observed that the nondominated points are only obtained by
the genetic algorithms. Another observation is that results are found from all the ten
mappings, even if, by using the analytical model, mapping 1 is the best one (only
from the energy point of view). We analyzed the results considering the last
observation and we saw that the best energy is obtained for mapping 6. The
architecture with the smallest area was found for mappings 3 and 5. The two
mappings are nondominated as mapping 3 has better energy consumption while
mapping 5 has a better application runtime. From the application runtime point of
view again mapping 6 is the best one.

We would have expected to obtain the best results, at least from an energy
point of view with the first mapping. The results can be explained by the fact that the
analytical model does not take into consideration the eventual collisions (network
congestion) that might appear in the network while the simulator can take them into
account. Another reason for this result is the fact that FADSE does not exhaustively
explore the design space. This means that for a certain mapping we might find a
hardware configuration which is very good but was not discovered in the other
explorations. These results will be further explored and analyzed in future work.

Multi-objective Optimization of System on Chip Architectures

Page 52 of 65

Figure 7.4-3 Best configurations found by all four algorithms for telecom benchmark

We analyzed the best SoC configurations found for each mapping for the

telecom benchmark. As we said, for mapping 6 we found the best architecture from
both energy and runtime point of view. The two SoC designs using this mapping were
found by the NSGA-II algorithm. SPEA2 found the best configurations from an area
point of view. The following table describes the architectural parameters of the SoC
designs. The table is also presented by us in [55].

NoC parameters
Objective Algorithm Mapping Frequency

[MHz]

Buffer

size

[flits]

Flit

size

[bytes]

Packet

size

[flits]

Routing

SoC

energy

[Joule]

SoC

area

[mm2]

Application

runtime

[ms]

Energy NSGA-II 6 100 4 4 10 YX 0.095159 50.113 46.1144
Area SPEA2 5 200 1 4 10 XY 0.158177 37.366 46.1132
Area SPEA2 3 400 1 4 10 YX 0.167928 37.366 46.1111

Runtime NSGA-II 6 900 4 32 6 YX 0.341914 81.227 45.4

As expected, we obtained the lowest energy consumption with the smallest

frequency allowed in our DSE process.
In accordance with our intuition, we obtained the lowest energy with a

System-on-Chip design that uses a NoC running at the minimum frequency permitted
by our DSE model. We also observed that the SoCs having the smallest area use a
NoC with buffers of just one flit in size and some of the smallest IP cores. Our two
area optimal SoC designs use only a quarter of the NoC buffering resources used by
our best energy and application runtime SoC architectures. Our two area-optimal
SoCs practically differ by their Network-on-Chip frequency. One of the two SoCs is
faster than the other because it uses a NoC twice faster. In terms of application
runtime, our optimal runtime SoC is more than half a millisecond faster than our other
three optimal Systems-on-Chip. This fastest SoC design uses a much faster Network-

Multi-objective Optimization of System on Chip Architectures

Page 53 of 65

on-Chip and bigger packets. This obviously impacts on SoC energy and area. Finally,
we observe our optimal SoCs use both XY and YX routing. This shows that routing
algorithms influence the SoC's performance.

7.4.2 Design Space Exploration on the MPEG-4 benchmark

Our next experiment was done on the best mapping analytically found for the MPEG-
4 benchmark. Since the time required for simulation on this benchmark was longer,
we were able to perform a DSE only on one mapping. We computed all the metrics
like in the previous experiment. In Figure 7.4-4 we present the hypervolume value
obtained by each algorithm during the 50 generations.

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Generation Count

H
y

p
e

rv
o

lu
m

e

NSGA-II

SPEA2

SMPSO

OMOPSO

Figure 7.4-4 Hypervolume obtained by all the algorithms for the MPEG-4 benchmark

Since we ran only on one mapping and do not present an average results the

curve is not as smooth as in previous experiment but the conclusions remain fairly the
same. The two genetic algorithms continue to find the best SoC designs, while the
PSO algorithms do not provide such good results. Again the PSO algorithms converge
very fast but this time NSGA-II has a very similar behavior. Form this point of view it
seems that NSGA-II finds the best results. From the perspective of results the PSO
algorithms perform poorly compared to the genetic ones.

Similar with previous chapter, we compute the coverage metric. First, we
compare the two genetic algorithms with the purpose of selecting the best one from
the coverage metric point of view. The results are shown in Figure 7.4-5. For the first
37 generations the algorithms have similar results. After these generations SPEA2
seems to gain an advantage. This is somehow different from what we concluded from
the hypervolume metric. Nevertheless, we decided to choose SPEA2 as the best
genetic algorithm in this experiment.

A comparison was made between the Pareto fronts approximation found by
the two genetic algorithms. We could not decide on one best algorithm. NSGA-II
finds better results in some areas of the space while its solutions are dominated (by
SPEA2 solutions) in other regions. Still we did observe a slightly larger spread of
solutions found by the NSGA-II algorithm. Choosing a winner is hard and it truly
depends on the requirements of the designer.

Multi-objective Optimization of System on Chip Architectures

Page 54 of 65

0%

20%

40%

60%

80%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

C
o

v
e

ra
g

e
Coverage(NSGA-II,SPEA2)

Coverage(SPEA2,NSGA-II)

Figure 7.4-5 Coverage comparison between NSGA-II and SPEA2, for MPEG-4

Second in Figure 7.4-6 we perform a comparison between the two selected

PSO algorithms: OMOPSO and SMPSO. For the first generations OMOPSO
performs significantly better and even after generation 20 it is still better from the
coverage point of view. After 45 generations the results are similar. We selected
OMOPSO as the best algorithm from the PSO ones because it has an overall better
quality of results. As in the previous comparison we looked at the Pareto front
approximations obtained by the two PSO algorithms. From our (subjective)
perspective the SMPSO algorithm seemed to have better results (better spread of
solutions).

For our final comparison using the coverage metric, we selected SPEA2 and
OMOPSO, the best performing algorithms from this point of view from the previous
comparisons. The results are presented in Figure 7.4-7. Due to the faster convergence
of the PSO algorithm during the first generations, the individuals obtained by
OMOPSO dominate the individuals obtained by SPEA2. But after 7-8 generations the
genetic algorithm manages to surpass the PSO algorithm reaching an almost 100%
domination. We analyzed the final Pareto fronts approximations of both algorithms
and the conclusion remains the same: the genetic algorithm obtains clearly better
results.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

C
o

v
e

ra
g

e

Coverage(SMPSO,OMOPSO)

Coverage(OMOPSO,SMPSO)

Figure 7.4-6 Coverage comparison between SMPSO and OMOPSO, for MPEG-4

Multi-objective Optimization of System on Chip Architectures

Page 55 of 65

0%

20%

40%

60%

80%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

C
o

v
e

ra
g

e

Coverage(SPEA2,OMOPSO)

Coverage(OMOPSO,SPEA2)

Figure 7.4-7 Coverage comparison between SPEA2 and OMOPSO, for MPEG-4

As a final result in this experiment we present one of the Pareto fronts

approximations found by the algorithms. We selected the front obtained by NSGA-II
since from our perspective it had the best results: the best spread of solutions, a good
hypervolume value and even from a coverage point of view quite close to the SPEA2
algorithm. The Pareto front approximation is depicted in Figure 7.4-8 (since this is a
joint work, we presented this figure also in [55]). The figure depicts an interpolation
of the points for a better visibility of the obtained 3D surface.

With this we proved that FADSE is able to find good configurations on
problems with three objectives and that the obtained solutions are spread along a
surface and here is no single solution that is the best on all the objectives (the
objectives are contradictory).

Figure 7.4-8 Surface obtained by interpolating the points in the objective space found by NSGA-

II

Multi-objective Optimization of System on Chip Architectures

Page 56 of 65

7.4.3 Design Space Exploration on H.264 and VOPD benchmarks

The last experiments were conducted on H.264 and VOPD benchmarks. The obtained
results were similar with the ones from the previous experiments. Due to space
constrains we present only the hypervolume values obtained; see Figure 7.4-9 and
Figure 7.4-10.

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

H
y

p
e

rv
o

lu
m

e

NSGA-II

SPEA2

SMPSO

OMOPSO

Figure 7.4-9 Hypervolume obtained by all the algorithms for the H.264 benchmark

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

H
y

p
e

rv
o

lu
m

e

NSGA-II
SPEA2
SMPSO
OMOPSO

Figure 7.4-10 Hypervolume obtained by all the benchmarks for the VOPD benchmark

 In both experiments the genetic algorithms perform better than the PSO ones.
For the H.264 decoder benchmark the PSO algorithms have the fastest convergence
speed but NSGA-II is also very close and finally the genetic algorithm even obtains
better results. Of course running multiple times would have given a more correct
image, but the DSE process, even with the major simplifications we proposed is still

Multi-objective Optimization of System on Chip Architectures

Page 57 of 65

lengthy. On VOPD, SPEA2 has the fastest convergence speed and a very good quality
of results.

As a final conclusion, from all our experiments in this chapter we can say that
the genetic algorithms are the best for this specific problem.

7.5 Improving the MANJAC Many-core System

The MANJAC [59] is a system with 64 native JAVA execution multi-core, multi-
threaded processors arranged into an 8x8 mesh. Each processor contains 6 Jamuth
[60] cores, and each core is able to run 4 threads (SMT).

We started porting a middleware on the MANJAC system called OCµ
Middleware. For this, a lighter implementation that could replace the communication
library used (JXTA - http://en.wikipedia.org/wiki/JXTA) had to be implemented.
Special care was necessary for several reasons:

- not all the methods implemented in the Java JDK are available on Jamuth;
- the scheduler always runs the thread with the highest priority. If there are n

active slots (n = 4) for threads then n threads can run in parallel. If there
are more than n threads in the application and a thread waits for a message
from a thread that it is not active a deadlock will be reached. To avoid this,
the threads have to let other threads execute by going themselves to sleep;

- problems might arise when calling blocking methods (e.g. wait for a
message from the network). These can also block a thread and lead to
deadlocks. The calls to blocking methods have to be bounded by a timer.

 More details about how to solve all these problems and about the
implementation can be found in our technical report [61].

Improvements to the initialization phase for the MANJAC system were also
done. We proposed new methods that allowed a better initialization phase that could
cope with failing nodes in the mesh. The original implementation was prone to
failures. Each node was responsible of the initialization of its North neighbor. If a
node failed the entire column above him would not be initialized. We proposed two
simple methods that could avoid such situations. The first method we proposed,
changed the behavior of the nodes by making them send initialization messages to
both North and East neighbors. The second method was a bit more advanced and was
able to understand the direction from where it has received the initialization and adapt
itself to where it should send itself the init messages. For this we also developed a
monitoring application which allowed us to observe live, through a GUI, the
initialization process.

More details about all this work can be found in our technical report
“Introduction to the MANJAC system” [61].

Page 58 of 65

8 Conclusions and Further Work

This work has the following contributions:

• We proposed a classification method which helped us during our experiments.
The evolutionary/bio-inspired distinction was visible even in the results
obtained in Chapter 7 where the algorithms grouped according to their class.

• We compared two simple evolutionary algorithms (SEMO and FEMO) on
synthetic functions (LOTZ, DTLZ). We concluded that FEMO provides better
results.

• We analyzed the fitness assignment process from two evolutionary algorithms
(NSGA-II and SPEA2). The conclusions we drawn from this analysis were in
concordance with the experimental results (SPEA2 produces more duplicates).

• We selected performance and quality metrics for multi-objective algorithms
that do not require the true Pareto front to be known.

• FADSE, a tool for automatic design space exploration, was developed
• FADSE includes many design space exploration algorithms (through the

integration with jMetal).
• We distributed the evaluation process with FADSE to accelerate the DSE

process if resources are available. As far as we know, FADSE is the only
publicly available general DSE framework for computer architectures which
allows distributed evaluation.

• To run distributed the DSE algorithms had to be adapted. We changed the
following algorithms: AbBYS, Densea, FastPGA, IBEA, NSGA-II,
OMOPSO, PESA2, SMPSO and SPEA2.

• We provide a lot of flexibility for the allocated resources to FADSE. The
number of clients can be increased/decreased dynamically during the DSE
process.

• FADSE was run on different HPC systems, Linux and Windows based.
• As a further acceleration technique implemented in FADSE is the database

integration. This allows us to reuse previous simulated configurations. We
reached up to 67% reuse from the database. This means a great reduction in
the time required for a DSE process.

• We implemented reliability techniques in FADSE: if clients do not respond,
networks fail, the simulation is resubmitted to another client.

• For problems like: power loss or if the server stops responding, we
implemented a checkpointing mechanism. This allows us to restart the DSE
process from an intermediate state. The checkpointing mechanism can also be
used to start FADSE from a user defined initial population.

• We developed an easy to use interface for connectors to the computer
simulators. The work of the connector developer is simplified through
different helper classes which mask the database integration and other aspects.
The interface hides from the connector the DSE algorithm used and all the
different settings that it can have.

• With help from our M.Sc. and B.Sc. students and collaborators we have
developed connectors for the following simulators: GAP, GAPtimize, M-SIM
2, M-SIM 3, UniMap, M5 and Multi2Sim.

Conclusions and Further Work

Page 59 of 65

• Starting from the M3Explorer DSE tool we have developed our own XML
configuration file. This XML is easy to use and most importantly flexible
enough so that any simulator can be connected to FADSE and all the required
parameters describe within this input file.

• The XML interface allows the user to configure the connector it wants to use.
From this file the user can configure the database connection, benchmarks
he/she wants to use, the parameters, the objectives and other relations
(hierarchies) and/or constraints between them.

• Several metrics were implemented in FADSE: hypervolume, coverage, error
ratio, “7 Point” average distance, etc.

• We have included into FADSE several methods to express domain knowledge:
constraints, hierarchical parameters, fuzzy rules.

• Constraints were proposed and used by other DSE tools too. We observed that,
when constraints are used, there tend to be many infeasible individuals in the
population, which leads to a lower convergence. We changed the DSE
algorithms and forced them (if the user desires) to generate at least a (user
specified) percentage of feasible individuals in each offspring population. This
improved the results and we used this technique in most of the experiments
that employed constraints.

• In our experiments we reached a point where some parameters had to be
deactivated. We decided to implement an extensible mechanism to express
this knowledge. We researched the different situations that can arise when
parameters depend on one another. We developed an easy to use interface to
describe the hierarchies between parameters.

• The hierarchy information had to be passed to the DSE algorithms thus we
proposed/developed new crossover and mutation operators.

• We propose to express domain-knowledge using fuzzy rules. This allows a
designer to express general knowledge about the architecture in a close to
natural language format.

• To our knowledge we are the first to use fuzzy rules as a mean to express prior
knowledge into a computer systems design space exploration tool.

• We integrated jFuzzyLogic library into FADSE, which allows us to use the
standard language FCL to describe fuzzy rules and implements multiple
inference systems.

• We proposed two new mutation operators, which could take into consideration
the information provided by the fuzzy rules. Both of them are derived from the
classical bit flip mutation but with different methods to compute the
probability to use the value obtained after defuzzification. The first method
uses a constant probability to apply the information while for the other method
we used a Gaussian distribution. For the second method we are not allowing it
to have a probability higher than 80% and not lower than 1/number of
parameters. We also using information about the membership value of the
value obtained after defuzzification. We use this information as a measure of
the confidence in the obtained value.

• We proposed some other enhancements. We discovered that designers do not
specify the fuzzy rules at the parameter level (number of sets in the level 1
cache, block size, associativity). They sometimes prefer to use a more general
notion (level 1 cache size). To allow this kind of interaction we proposed the

Conclusions and Further Work

Page 60 of 65

so called virtual parameters. Users are now allowed to combine several
parameters into a single one and use that one as in input in fuzzy rules.

• We are proposing a random defuzzifier which allows the user to configure the
minimum membership of the values taken into consideration. We are using
this defuzzification method when the shape of the membership values defined
for the rules are (close to) rectangular.

• We have proposed a method for calculating GAP’s hardware complexity.
• DSE was performed on GAP with great results.
• We proved that FADSE can find better configurations than the ones found

after a manual exploration of the GAP architecture. We obtained
configurations with the same CPI but half the complexity. We proved that
human designers can be biased and might not discover some subtle relations
between the parameters.

• Single objective optimizations were conducted on code optimization tools
with FADSE that led to good results.

• We performed designs space exploration of computer architectures at the same
time with code optimization tools. FADSE could cope with this challenge and
good results were obtained.

• We compared three DSE algorithms (NSGA-II, SPEA2 and SMPSO) and saw
how they perform on the GAP architecture (with and without GAPtimize). We
concluded that SMPSO is the best both in terms of convergence speed and
quality of solutions. NSGA-II performed a little better than SPEA2 when only
GAP was explored but the situation reversed when both GAP and GAPtimize
were optimized at the same time.

• From the algorithm comparisons we concluded that in fact all the algorithms
find very good results and that metrics like coverage might be misleading. We
proposed to use metrics based on e-dominance.

• We proved that the integration with a database can reduce the design space
exploration time to a large extent. We obtained reuse factors of over 60% in
some situations.

• A method was proposed to use the fuzzy rule system integrated in FADSE
with rules generated automatically from previous explorations. We showed
that these rules can reduce the search time and can improve the results.

• The hierarchical parameters were tested with optimizations from GAPtimize.
Good preliminary results were obtained.

• We continued the work done by Árpád Gellért in his PhD thesis, where he has
performed a manual exploration of an Alpha architecture using the M-SIM 2
simulator. He varied only 2 parameters, since the design space exploration was
manual. We extended this work to 19 parameters with FADSE.

• We performed different experiments with M-SIM 2 and FADSE: using
constraints, starting from initial good configurations, running with information
from fuzzy rules (constant and Gaussian distribution of probability to use the
information).

• We showed that adding domain-knowledge can improve the results. But
caution is necessary. We observed in our experiments on both GAP and M-
SIM that forcing the algorithm to apply the information provided from the
outside leads to a loss in diversity if the information is not diverse itself. In
other words when we simulated with M-SIM and only a few rules/linguistic
terms were used, applying this information with a great probability lead to a

Conclusions and Further Work

Page 61 of 65

loss in diversity and eventually not so good results. On GAP where many rules
with many linguistic terms were used, the higher probability leads in fact to
better results. On another experiment we introduced some good configurations
in the initial population. The algorithm converged fast to very good results but
it did not spread along the whole Pareto surface like the other runs did. The
problem was that the good initial configurations were better than all the other
individuals inserted randomly in the population, but at the same time they
were very similar (differed in only 2 parameters). Being the best ones they
survived for the next generations and became parents, leading to similar
children. The mutation was unable to change too much the individuals and the
algorithm failed to explore certain areas of the Pareto front.

• We integrated FADSE with M-SIM 3 and showed that FADSE can be used
with multi-core architecture simulators.

• An overview of multi-core simulators has been performed. We also improved
some of them by implementing new coherency protocols, partially integrated
power consumption models, etc.

• FADSE was integrated with UniMap, a SoC simulator developed by Ciprian
Radu in his PhD thesis. Together we performed automatic DSE on SoC
systems. We also compared four algorithms on this new problem.

• For the SoC exploration we concluded that the genetic algorithms perform
better than the PSO ones, but still, the PSO algorithms converge a little bit
faster.
As future work we plan to introduce a neural network along side the DSE

algorithms. As the DSE process evaluates individuals they will be used to train the
neural network. When the confidence in the neural network will be high enough, it
will be given random values (random values for the parameters) and it will try to
predict the values of the objectives. The most promising individuals will be injected in
the offspring population.

We plan to continue the work started with the fuzzy rules and propose new
methods to include the information provided by them.

Page 62 of 65

9 References

[1] L. Vintan, Arhitecturi de procesoare cu paralelism la nivelul instructiunilor.

Bucharest, Romania: Editura Academiei Române, 2000.
[2] L. Vintan, “Direcţii de cercetare în domeniul sistemelor multicore / Main

Challenges in Multicore Architecture Research,” Revista Romana de Informatica
si Automatica, vol. 19, no. 3, 2009.

[3] L. Vintan, Prediction Techniques in Advanced Computing Architectures.
Bucharest, Romania: Matrix Rom Publishing House, 2007.

[4] A. Florea and L. Vintan, Simularea şi optimizarea arhitecturilor de calcul în
aplicaţii practice. Bucharest, Romania: Matrix Rom Publishing House.

[5] H. Munk et al., “The HiPEAC Vision,” HiPEAC Roadmap, 2010. [Online].
Available: http://www.hipeac.net/system/files/LR_3910_hipeac_roadmap-2010-
v3.pdf.

[6] M. Reyes-Sierra and C. A. . Coello, “Multi-objective particle swarm optimizers:
A survey of the state-of-the-art,” International Journal of Computational
Intelligence Research, vol. 2, no. 3, pp. 287–308, 2006.

[7] M. Laumanns, L. Thiele, E. Zitzler, E. Welzl, and K. Deb, “Running Time
Analysis of Multi-objective Evolutionary Algorithms on a Simple Discrete
Optimization Problem,” in Proceedings of the 7th International Conference on
Parallel Problem Solving from Nature, 2002, pp. 44-53.

[8] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-objective
optimization test problems,” in E-Commerce Technology, IEEE International
Conference on, Los Alamitos, CA, USA, 2002, vol. 1, pp. 825-830.

[9] H. Calborean and L. Vintan, “An Automatic Design Space Exploration
Framework for Multicore Architecture Optimizations,” in Proceedings of The 9-
th IEEE RoEduNet International Conference, Sibiu, Romania, 2010, pp. 202-
207.

[10] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” Evolutionary Computation, IEEE
Transactions on, vol. 6, no. 2, pp. 182-197, 2002.

[11] E. Zitzler, M. Laumanns, L. Thiele, and others, “SPEA2: Improving the strength
Pareto evolutionary algorithm,” in Eurogen, 2001, pp. 95–100.

[12] M. R. Sierra and C. A. . Coello, “Improving PSO-based multi-objective
optimization using crowding, mutation and e-dominance,” in Evolutionary
Multi-Criterion Optimization, 2005, pp. 505–519.

[13] A. Nebro, J. Durillo, J. Garcıa-Nieto, C. A. . Coello, F. Luna, and E. Alba,
“Smpso: A new pso-based metaheuristic for multi-objective optimization,” in
Proceedings of the IEEE Symposium Series on Computational Intelligence,
2009, pp. 66–73.

[14] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength pareto approach,” IEEE transactions on
Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[15] C. A. C. Coello, D. A. V. Veldhuizen, and G. B. Lamont, Evolutionary
Algorithms for Solving Multi-Objective Problems, 1st ed. Springer, 2002.

[16] E. Zitzler, “Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications,” Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland, 1999.

References

Page 63 of 65

[17] G. Palermo, C. Silvano, and V. Zaccaria, “Discrete Particle Swarm
Optimization for Multi-objective Design Space Exploration,” in Digital System
Design Architectures, Methods and Tools, 2008. DSD ’08. 11th EUROMICRO
Conference on, 2008, pp. 641-644.

[18] C. Silvano et al., “MULTICUBE: Multi-Objective Design Space Exploration of
Multi-Core Architectures,” in Proceedings of the 2010 IEEE Annual Symposium
on VLSI, 2010, pp. 488–493.

[19] J. J. Durillo, A. J. Nebro, F. Luna, B. Dorronsoro, and E. Alba, “jMetal: A Java
Framework for Developing Multi-Objective Optimization Metaheuristics,”
Departamento de Lenguajes y Ciencias de la Computacion, University of
Malaga, E.T.S.I. Informatica, Campus de Teatinos, ITI-2006-10, Dec. 2006.

[20] R. Ubal, J. Sahuquillo, S. Petit, and P. López, “Multi2Sim: A Simulation
Framework to Evaluate Multicore-Multithreaded Processors,” in Proc. of the
19th Int’l Symposium on Computer Architecture and High Performance
Computing, 2007.

[21] S. Uhrig, B. Shehan, R. Jahr, and T. Ungerer, “A Two-dimensional Superscalar
Processor Architecture,” in The First International Conference on Future
Computational Technologies and Applications, Athens, Greece, 2009.

[22] E. H. Mamdani, “Application of fuzzy logic to approximate reasoning using
linguistic synthesis,” IEEE Transactions on Computers, pp. 1182–1191, 1977.

[23] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a
fuzzy logic controller,” International Journal of Man-Machine Studies, vol. 7,
no. 1, pp. 1–13, 1975.

[24] D. T. Pham and M. Castellani, “Action aggregation and defuzzification in
Mamdani-type fuzzy systems,” Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science, vol. 216, no. 7,
p. 747, 2002.

[25] “IEC 61131-7 standard.” [Online]. Available:
http://www.fuzzytech.com/binaries/ieccd1.pdf.

[26] “International Electrotechnical Commission.” [Online]. Available:
http://www.iec.ch/.

[27] P. Cingolani, “jFuzzyLogic.” [Online]. Available:
http://jfuzzylogic.sourceforge.net/html/index.html.

[28] R. Jahr, T. Ungerer, H. Calborean, and L. Vintan, “Automatic Multi-Objective
Optimization of Parameters for Hardware and Code Optimizations,” in
Proceedings of the 2011 International Conference on High Performance
Computing & Simulation (HPCS 2011), 2011, pp. 308 – 316.

[29] H. Calborean, R. Jahr, T. Ungerer, and L. Vintan, “Optimizing a Superscalar
System using Multi-objective Design Space Exploration,” in Proceedings of the
18th International Conference on Control Systems and Computer Science
(CSCS), Bucharest, Romania, Calea Grivitei, nr. 132, 78122, Sector 1,
Bucuresti, 2011, vol. 1, pp. 339–346.

[30] R. Jahr, T. Ungerer, H. Calborean, and L. Vintan, “Boosting Design Space
Explorations with Existing or Automatically Learned Knowledge,” presented at
the 16th International GI/ITG Conference on “Measurement, Modelling and
Evaluation of Computing Systems” and “Dependability and Fault-Tolerance”
(MMB & DFT 2012) (Submitted), Kaiserslautern, Germany, 2012.

[31] R. Jahr, “FADSE and GAP Design Space Exploration for the Grid Alu
Processor (GAP) with the Framework for Automatic Design Space Exploration
(FADSE),” Chamonix, France, Apr-2011.

References

Page 64 of 65

[32] B. Shehan, R. Jahr, S. Uhrig, and T. Ungerer, “Reconfigurable Grid Alu
Processor: Optimization and Design Space Exploration,” in Proceedings of the
13th Euromicro Conference on Digital System Design (DSD) 2010, Lille,
France, Los Alamitos, CA, USA, 2010, pp. 71–79.

[33] S. Uhrig, B. Shehan, R. Jahr, and T. Ungerer, “The Two-dimensional
Superscalar GAP Processor Architecture,” International Journal on Advances in
Systems and Measurements, vol. 3, no. 1 and 2, pp. 71 – 81, Sep. 2010.

[34] R. Jahr, B. Shehan, S. Uhrig, and T. Ungerer, “Optimized Replacement in the
Configuration Layers of the Grid Alu Processor,” in Proceedings of the Second
International Workshop on New Frontiers in High-performance and Hardware-
aware Computing (HipHaC‘11), Strasse am Forum 2, 76131 Karlsruhe,
Germany, 2011, pp. 9–16.

[35] R. Jahr, B. Shehan, S. Uhrig, and T. Ungerer, “Static Speculation as Post-Link
Optimization for the Grid Alu Processor,” in Proceedings of the 4th Workshop
on Highly Parallel Processing on a Chip (HPPC 2010), 2010.

[36] B. Shehan, “Dynamic Coarse Grained Reconfigurable Architectures,”
University of Augsburg, 2010.

[37] A. Gellert, “Advanced Prediction Methods Integrated Into Speculative
Computer Architectures,” “Lucian Blaga” University of Sibiu, Romania, Sibiu,
Romania, 2008.

[38] A. Gellert, G. Palermo, V. Zaccaria, A. Florea, L. Vintan, and C. Silvano,
“Energy-performance design space exploration in SMT architectures exploiting
selective load value predictions,” in Proceedings of the Conference on Design,
Automation and Test in Europe, Dresden, Germany, 2010, pp. 271–274.

[39] A. Gellert, A. Florea, and L. Vintan, “Exploiting selective instruction reuse and
value prediction in a superscalar architecture,” Journal of Systems Architecture,
vol. 55, no. 3, pp. 188–195, Mar. 2009.

[40] J. J. Sharkey, D. Ponomarev, and K. Ghose, “M-SIM: A Flexible, Multithreaded
Architectural Simulation Environment - Technical Report CS-TR-05-DP01.”
Department of Computer Science, State University of New York at Binghamton,
Oct-2005.

[41] D. Burger and T. M. Austin, “The SimpleScalar tool set, version 2.0,”
SIGARCH Comput. Archit. News, vol. 25, no. 3, pp. 13–25, Jun. 1997.

[42] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithreading:
maximizing on-chip parallelism,” in Proceedings of the 22nd annual
international symposium on Computer architecture, S. Margherita Ligure, Italy,
1995, pp. 392–403.

[43] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in Proceedings of the 27th
International Symposium on Computer Architecture (ISCA), Vancouver,
Canada, 2000, vol. 28, pp. 83–94.

[44] “The SPEC benchmark programs.” [Online]. Available: http://www.spec.org.
[45] A. Gellert, H. Calborean, L. Vintan, and A. Florea, “Multi-Objective

Optimizations for a Superscalar Architecture with Selective Value Prediction,”
IET Computers & Digital Techniques (submitted, manuscript ID CDT-2011-
0116).

[46] D. August et al., “Unisim: An open simulation environment and library for
complex architecture design and collaborative development,” Computer
Architecture Letters, vol. 6, no. 2, pp. 45–48, 2007.

References

Page 65 of 65

[47] C. Bienia, “Benchmarking Modern Multiprocessors,” Princeton University,
2011.

[48] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2
programs: Characterization and methodological considerations,” in Proceedings
of the 22nd International Symposium on Computer Architecture, Santa
Margherita Ligure, Italy, 1995, pp. 24–36.

[49] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt, “The M5 Simulator: Modeling Networked Systems,” IEEE Micro,
vol. 26, pp. 52-60, 2006.

[50] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“McPAT: an integrated power, area, and timing modeling framework for
multicore and manycore architectures,” in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2009, pp. 469–480.

[51] J. Renau et al., SESC simulator. 2005.
[52] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M.

R. Stan, “HotSpot: A compact thermal modeling methodology for early-stage
VLSI design,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 14, no. 5, pp. 501–513, 2006.

[53] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi, “A
Comprehensive Memory Modeling Tool and Its Application to the Design and
Analysis of Future Memory Hierarchies,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture, 2008, pp. 51-62.

[54] C. Radu and L. Vinţan, “UNIMAP: UNIFIED FRAMEWORK FOR
NETWORK-ON-CHIP APPLICATION MAPPING RESEARCH,” Acta
Universitatis Cibiniensis â€“ Technical Series, May 2011.

[55] C. Radu, “Optimized Algorithms for Network-on-Chip Application Mapping,”
PhD thesis, “Lucian Blaga” University of Sibiu, Romania, Sibiu, Romania,
2011.

[56] C. Radu, “Developing Network-on-Chip Architectures for Multicore Simulation
Environments,” PhD Technical Report no. 1, Computer Science Department,
“Lucian Blaga” University of Sibiu, PhD report 1, Jun. 2010.

[57] “The Embedded System Synthesis Benchmarks Suite (E3S) website.” [Online].
Available: http://ziyang.eecs.umich.edu/~dickrp/e3s/.

[58] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: a fast and accurate
NoC power and area model for early-stage design space exploration,” in
Proceedings of the Conference on Design, Automation and Test in Europe, 3001
Leuven, Belgium, Belgium, 2009, pp. 423–428.

[59] S. Uhrig, “The MANy JAva Core processor (MANJAC),” in HPCS, 2010, p.
188.

[60] S. Uhrig and J. Wiese, “jamuth: an IP processor core for embedded Java real-
time systems,” in Proceedings of the 5th international workshop on Java
technologies for real-time and embedded systems, New York, NY, USA, 2007,
pp. 230–237.

[61] H. Calborean, “Introduction to the MANJAC system,” Computer Science
Department, “Lucian Blaga” University of Sibiu, Sibiu, Romania, 4, 2011.

