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1 Introduction 

 
As technology has advanced, computer systems have become more and more complex 
[1][2][3][4]. When designing such a system, an architect must take into account many 
parameters. The design space of a microprocessor-compiler ensemble can reach 
millions of billions of possible configurations. A microprocessor can not go into 
production until it is not evaluated to meet the performance criteria. Evaluating a 
single configuration can take hours or even days. Therefore an exhaustive evaluation 
is infeasible. 

The current approach is to use human experts to select candidate 
configurations, evaluate them on computer simulators and then try to optimize them. 
With the growth in complexity and with the increasing number of integrated 
heterogeneous cores, the task of finding good configurations becomes very hard for a 
designer. 

The problem is further exacerbated by the fact that not only performance 
needs to be optimized: power consumption, area integration became very important 
objectives. Finding relations between parameters of the architecture and the way they 
influence the multiple objectives that need to be optimized proves to be difficult. 

One solution to this problem is to use tools that perform automatic design 
space exploration (DSE) using different heuristic search algorithms. In the HiPEAC 
vision [5] automatic design space exploration (ADSE) is viewed as one of the most 
important problems that need to be solved in the following years. Heuristic search 
algorithms have been used for NP-hard problems for long time. In the recent years, 
the computer designers have shown an increased interest for them. They are currently 
the one of the few viable solutions to NP hard problems, like the one of design space 
exploration. 

The scope of this PhD thesis is to perform multi-objective optimization of 
advanced computer architectures using experts’ domain-knowledge. For this we have 
to fulfill the following objectives: 

- analyze the state of the art heuristic algorithms and classify them; 
- determine how they could cope with real life problems, where constraints 

between the parameters might exist; 
- find methods to measure their performance; 
- develop a robust and fast DSE framework that can connect to any existing 

computer simulator; 
- include multiple heuristic algorithms into this framework; 
- research how domain-knowledge could be easily integrated in this framework 

and how it could influence the heuristic algorithms; 
- evaluate the algorithms on several computer simulators; the simulators should 

range from single to multi-core and even to system on chip simulators; 
- perform comparisons between the algorithms and determine the impact of 

domain-knowledge on the results. 
 



“It's so much easier to suggest solutions  
when you don't know too much about the problem.” 

 
Malcolm Forbes 
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2 Design Space Exploration Algorithms 

 
As we already stated in Chapter 1 we are dealing with NP hard multi-objective search 
problems. Manual design space exploration is not feasible so new methods are 
required. One of them is to use multi-objective algorithms to perform this task 
automatically. 

We use heuristic-stochastic search methods that we divided into two classes: 
evolutionary algorithms and bio-inspired algorithms. All the used algorithms are 
based on the Pareto efficiency: 

2.1 Multi-Objective Search Algorithms 

In Figure 2.1-1 the Pareto front for a bi-objective minimization problem can 
be seen. The points represent individuals. Point c is not on the Pareto front because it 

is dominated by both 
points, a and b. Points a 
and b are not strictly 
dominated by any 
other, and hence do lie 
on the frontier. 

The problem 
with the Pareto front is 
that it does not give us 
an ordering between the 
points (for example 
points a and b in the 
figure above).  

The following 
definitions are used in 

[6]: 
Definition 1: given two vectors nRyx ∈

rr

,  we say that yx
rr

≤ if ii yx ≤ for any 

ni ,..,1=  and that x
r

dominates y
r

(written as yx
r

p
r

) if yx
rr

≤  and yx
rr

≠ . 

Definition 2: we say that a vector of decision variables nRXx ⊂∈
r

 is 
nondominated with respect to X, if it does not exist another Xx ∈'

r

such 

that )()'( xfxf
rr

p
rr

, where f
r

 is the multi-objective function. 

Definition 3: a vector of decision variables nRFx ⊂∈
*r  (F is the feasible 

region) is Pareto-optimal if it is nondominated with respect to F. 
Definition 4: the Pareto Optimal Set *P  is defined by: 

*P = { xFx
rr

∈  is Pareto-optimal} 

Definition 5: the Pareto Front *PF  is defined by: 

{ }** )( PxRxfPF n ∈∈=
rr

r

 

We call Pareto front approximation (or known Pareto front), the Pareto 
optimal solutions in the objective space, found by an algorithm up to a point. The 

 
Figure 2.1-1 Pareto front 



Design Space Exploration Algorithms 
 

 

Page 3 of 65 

individuals, that form the Pareto front approximation, are called, in the parameter 
space, the Pareto set. 

2.1.1 SEMO and FEMO Experiment 

We used in our first experiments two simple evolutionary algorithms: SEMO and 
FEMO [7]. SEMO stores an archive of all the non-dominated individuals. This 
archive represents the current population. From this population a parent is chosen 
randomly and mutated by randomly changing a parameter. The new individual is 
accepted in the archive if it is not dominated by other individuals and there is no other 
individual that has the same values for the objectives. If there are individuals in the 
archive dominated by this new one, they are eliminated. FEMO is an improvement of 
SEMO. The difference is that: when selecting the parent, the algorithm 
deterministically chooses the individual with the smallest number of offspring. 

We tested these two algorithms on two synthetic test problems LOTZ [7] and 
DTLZ1 from the DTLZ family of problems [8]. We concluded that both algorithms 
were able to solve the LOTZ problem in a relatively small amount of time (2% and 
1% of the effort required by an exhaustive evaluation for SEMO and FEMO 
respectively). The DTLZ1 problem was not solved by any of the algorithms (no 
Pareto optimal points were found). These results were published by us in [9]. 

2.1.2 NSGA-II 

NSGA-II is a genetic algorithm developed by Deb et al. [10]. The algorithm works as 
follows: it first generates an initial population and evaluates it (this will be the parent 
population). From this initial/parent population an offspring population is generated 
using crossover and mutation. The two populations (parent and offspring) are united 
into a single one and sorted (fitness assignment) according to the domination 
relationship and a density information (crowding). From this sorted union the best 
individuals (best fitness) are selected and they will form the new parent population 
and the process is repeated. 

2.1.3 PEA2 

SPEA2 introduced by Zitzler et al. [11] is another genetic algorithm. The only 
differences between NSGA-II and SPEA2 are: (a) SPEA2 uses an external population 
(archive) to keep nondominated individuals and (b) it assigns fitness in a different 
manner. First, the strength of each individual is computed (which is equal with the 
number of individuals the current individual dominates). Then the raw fitness is 
computed. The raw fitness is the sum of strengths of the individuals that dominate 
current individual. To this raw fitness, the density information is added, which is the 
inverse distance to the nearest kth neighbor, to obtain the fitness of the individual. The 
algorithm then selects the best individuals (from both the archive and the offspring 
population) and stores them in the archive. The archive is then used as a parent 
population. 

2.1.4 Comparison between NSGA-II and SPEA2 

SPEA2 tends to retain many duplicates in its archive during the environmental 
selection process (see [11]) partially because of the density computation method. In 
SPEA2 identical individuals will have the same fitness assigned (only one neighbor is 
used to compute the density), while in NSGA-II these individuals can have a different 
fitness assigned. This happens because of the crowding assignment [10]: two 
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individuals are used to compute the crowding, one on each side of the current 
individual (sorted according to an objective). This means that twins will have one 
identical individual, but there is a high probability, that the other one is a different 
individual. In SPEA2 there is a chance that both individuals get selected and passed to 
the next generation while in NSGA-II one of them might be discarded. During the 
selection process, all the individuals have the same chance of becoming parents, but 
since in SPEA’s archive there are more duplicates than in NSGA-II, they have a 
greater chance of being selected and produce the same individuals. Another problem 
that leads to duplicates is the archive used in SPEA2. SPEA2 stores in the archive 
only the nondominated individuals. Parents are selected only from the archive but in 
our explorations we noticed that there are usually fewer nondominated individuals 
than the maximum size of the archive/population. As a result the archive will be quite 
empty (hence a greater chance to select the same parents again) while in NSGA-II the 
population is filled with worse individuals until it is full. The advantage of SPEA2 is 
that these duplicated individuals do not have to be simulated again due to the 
integrated database. The disadvantage is that SPEA2 does not have such a good 
spread of solutions (even if at the end there are 100 individuals many of them are 
duplicates). 

2.2 Multi-objective Particle Swarm Optimization 

In this chapter we will present some bio-inspired algorithms. They are based on the 
way birds search for food. 

2.2.1 OMOPSO and SMPSO 

OMOPSO [12] is a particle swarm optimization method (bio-inspired). In these 
algorithms the population is called swarm. The individuals are called particles, which 
are "flown" through space following the best performing particle at that moment. The 
position of a particle is given by the current values of its parameters, belonging to an 
orthogonal representation particle's space. As every particle tries to get closer to the 
current best particle its parameters are changed. The change takes into account both 
the current global best and the particle's personal best. Based on this change, the 
particle gets a new position and it needs to be evaluated again. After all the particles 
are evaluated, the new global best particle is selected, the personal bests are updated 
and the process is restarted. In multi-objective PSO algorithms there can be multiple 
global best particles. The approach when selecting a leader is similar with selecting 
parents in NSGA-II. 

SMPSO [13] is a development of OMOPSO. The most notably change is that 
it ads a method of constraining the maximum speed a particle can reach. 

2.3 Handling Constraints 

Most of the real world problems are constrained problems. Methods of handling these 
constraints are needed. The method we used for constraints handling is proposed in 
[10] and is employed in couple with binary tournament selection. The solution 
adopted is:  

- if both individuals are feasible then the domination relation is used; 
- if one individual is feasible and one is not feasible, the feasible one is selected; 
- if both individuals are infeasible then the one that violates the least constrains 

is selected. If this can not be determined or both individuals violate the same 
number of constrains the selected individual is chosen randomly. 
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2.4 Measuring Multi-objective Algorithms Performance 

2.4.1 Hypervolume 

This metric was used by Zietzler and Thiele [14] and Coelo [15]. Let 
XxxxX k ⊆= ),...,,(' 21  be a set of decision vectors (individuals). The function 

)'(XS  gives the volume enclosed by the individuals and the axes in the objective 
space. 

When the 
objectives have to be 
minimized a point has 
to be established, 
called hypervolume 
reference point, which 
will replace the origin 
in the hypervolume 
computation. The 

hypervolume 
reference point 
coordinates are set to 
the maximum values 
of the objectives (see 
Figure 2.4-1). The 
hypervolume value 
represents the 

percentage covered by the volume enclosed between the hypervolume reference point 
and the Pareto front approximation, from the total volume enclosed between the 
hypervolume reference point and the axes (the values are normalized). 

2.4.2 Two Set Difference Hypervolume 

This metric was proposed by E. Zitzler in his PhD thesis [16]. Two Set Difference 
Hypervolume (TSDH) is defined as: )"()"'()",'( XHXXHXXTSDH −+= where 

XXX ⊆'',' are two sets of decision vectors, )(XH  is the hypervolume of the space 
covered by the decision vector X, and "' XX +  is the nondominated decision vector 
obtained after the union of 'X and "X . 

)",'( XXTSDH computes the hypervolume of the space that it is dominated by 
'X  but not by "X . 

2.4.3 Coverage of Two Sets 

This metric was used by Zietzler and Thiele [14] and Palermo [17]. It computes the 
percentage of individuals from a populations dominated by individuals from another 
population. 

Let XXX ⊆'',' be two sets of decision vectors. The function C maps the 
ordered pair ( '',' XX ) to the interval [0, 1]: 

 
''

}''':'';''''{
)'','(

X

aaXaXa
XXC

f∈∃∈
=  

 
Figure 2.4-1 Hypervolume computation for a minimization 

problem 
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3 Developing FADSE: A Framework for Automatic 
Design Space Exploration 

 
Framework for Automatic Design Space Exploration (FADSE) is a tool, developed by 
us, which is able to perform automatic design space exploration using a large variety 
of algorithms. FADSE is able to run the evaluations in a distributed manner on Local 
Area networks (LAN) or High Performance Computing (HPC) systems. It is reliable: 
can recover from crashed network, crashed clients or power loss. It includes many 
features that allow the user to intervene and input his/hers knowledge inside the 
search algorithm. All this information can be provided into a human readable form 
using a simple interface (some inspired from the M3Explorer tool [18]).  

FADSE integrates the jMetal library [19] which provides many state-of-the-art 
multi-objective search algorithms. We have extended jMetal and we are able to 
perform design space exploration with simulators like: Multi2Sim [20], GAP [21], 
M5 (http://www.m5sim.org) and M-SIM (http://www.cs.binghamton.edu/~msim/). 
We have included multi-objective test functions (LOTZ) and metrics: error ratio, 
coverage of two sets, hypervolume, hypervolume two set difference. 

FADSE is developed in JAVA and can be run on different operating systems. 
The latest version of FADSE can be downloaded from 

http://code.google.com/p/fadse/. 

3.1 Accelerating DSE through Distributed Evaluation 

The framework has been designed as a client-server application. The server runs the 
DSE algorithm and the clients perform the simulations.  

We changed some of the algorithms implemented in jMetal to work in a 
distributed manner. Most of the evolutionary algorithms generate an offspring 
population and only after all the individuals are evaluated they are used. Taking 
advantage of this behavior the evaluation process can be distributed easily. The 
offspring individuals are evaluated in parallel by FADSE (see Figure 3.1-1). If 
multiple benchmarks need to be run to evaluate a single configuration, then these 
separate evaluations are also done in parallel. 

Next FADSE collects all the results for a single individual and computes the 
average. As an example, for an algorithm with an offspring population of 100, where 
each individual has to be evaluated on 10 benchmarks, we reach 1000 simulations that 
can be run in parallel. 

FADSE is designed to cope with the failures of clients or the network. If a 
client does not respond, the task, which was scheduled on it, is sent to another client. 
After a number of retries the job is marked as infeasible if none of the clients manages 
to complete it. This allows the exploration to continue even if some configurations are 
proven to be impossible to simulate. If the whole system has to be restarted FADSE 
can continue its work because of the built in checkpointing mechanism. 

The clients have recovery mechanisms implemented. When a client is started, 
in parallel a watchdog timer thread is also executed. If the client does not receive 
messages for a period of time and it is not simulating a configuration, it is 
automatically restarted. This prevents situations were a client might be blocked on 
something unexpected. 
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Figure 3.1-1 Structure of FADSE (distributed version) 

 
With this server-client configuration in place, we were able to run on local 

area networks, HPC systems and multi-processor virtual machines. Some of the 
systems on which we have tested FADSE are presented below. 

As a local area network we have used 9 Intel dual-core machines. They were 
configured in VPN (Virtual Private Network) to assure that their IP’s did not change 
over time (they were configured using DHCP and power loss was frequent). One 
computer was chosen as the server. On this computer the DSE algorithm and the 
MySQL server (see Chapter 3.2 about the reuse scheme implemented in FADSE) 
were running. On all the other machines, two FADSE clients were started. This 
system was used to obtain some of the results presented in Chapter 5. The system had 
a combination of Windows XP and Windows 7 machines. 

FADSE was used on two HPC systems: one residing at University “Lucian 
Blaga” from Sibiu and one in Bucharest from the Politehnica University. The one 
from Sibiu was extensively used. All the results presented in Chapters 6 and 7 were 
obtained using this system. All these clusters use Red Hat Linux as an operating 
system. 

The HPC system from Sibiu (http://zamolxe.hpc.ulbsibiu.ro/ganglia/) contains 
two clusters: one based on Intel Xeon quad core processors (CSAC cluster) and one 
based on IBM Cell processors (ACAPS cluster). 

The CSAC cluster contains 15 blades with two processors and 4GB of 
DRAM. This means there are 8 cores on each blade, which leads to 120 cores in the 
whole system. In our experiments we have used one node (head node) as the server 
and no client was run on this node (this node was used by many other services, 
including MySQL). On all the other nodes clients were started (8 on each one). 

The ACAPS cluster contains two blades, each blade having two Cell 
processors. Each Cell processor contains a multithreaded PowerPC core and 9 
specialized processing units. We have tested successfully FADSE with this system 
too. We started a server on the head node on the CSAC cluster and the clients on the 
ACAPS cluster. 

Successful tests were conducted on the HPC from Bucharest. This system 
allows starting processes using batch commands. Some special scripts were required 
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to map FADSE on this system, but in the future we plan to integrate the possibility to 
use batch commands from within FADSE using some specialized connectors. Tests 
were conducted using around 100 clients. 

We present one final use case: a Windows 7 based virtual machine with 32 
processors from the University of Augsburg. We used this machine to obtain most of 
the results in Chapter 5. We either ran a single server with 32 clients (the server does 
not consume much processor time, and it is idle most of the time during simulation), 
or two servers in parallel with 16 clients each. 

Multiple servers can be started on the same machine and they can also run 
alongside clients. This means that multiple DSE processes can be started in parallel on 
the same system, so all the resources available can be used. 

3.2 Accelerating DSE through Results Reuse 

DSE algorithms tend to produce the same individuals again after some generations. 
Instead of simulating them once more we thought to reuse the results from a database. 
For this we have connected FADSE with a Database Management System (DBMS). 

The integration with the database proved to be very successful. We reached a 
reuse of around 67% during a 100 generations run with a population of 100 
individuals. Also since we ran DSE processes with the same simulator but in different 
context, results could be used from previous explorations leading to an even greater 
reuse. 

3.3 Universal Interface – Connectors 

FADSE is designed in such a manner that it can be connected to almost any existing 
simulator with a minimal effort and in most situations with no changes to the 
simulator (source code is not necessary). 

3.4 Extensible Input XML Interface 

A XML interface is used to configure FADSE, the design space and the specific 
constrains. First the user has to specify the simulator connector he/she wants to load 
and the set of parameters required by the connector. 

Then a list of benchmarks is specified, the database connection is configured 
and the list of parameters that need to be varied (these parameters can be of type 
integer, arithmetical progression, geometrical progression, list of strings, etc.) is 
specified. 



“Information is not knowledge. 
The only source of knowledge is experience.” 
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4 Improving FADSE with Domain-specific Knowledge 

 
All the algorithms included in FADSE are general ones. They were designed to solve 
many types of problems. Specialized algorithms, that include knowledge about the 
problem to be solved, might provide better results, but they can be applied to a single 
problem. 

We still want FADSE to be a general framework, a tool that can be used with 
many simulators/problems. The goal of this chapter is to identify some methods to 
express knowledge in an easy manner and to include it into FADSE without loosing 
generality. This knowledge will be then used by the design space exploration 
algorithms. 

4.1 Design Space Constraints 

Constraints are needed when optimizing processor architectures to avoid impossible 
configurations or configurations that the designer knows will not lead to good results. 
One of the best examples is that the size of the level 2 cache has to be bigger then the 
size of the level 1 cache, otherwise it does not make any sense. For a DSE algorithm, 
the size parameter has no meaning so it might generate configurations where the 
above rule is not respected. 

When designing the interface for FADSE, through which the user can specify 
the constraints, we used as a model the M3Explorer tool. The implementation is 
however original. Migrating from M3Explorer to FADSE should not be difficult since 
FADSE’s interface is mostly a superset of the M3Explorer interface. The constraints 
can be easily expressed from within the input XML configuration file. 

The constraints implemented in FADSE are one of its most powerful features. 
They give the user a good control over the size of the design space and its borders. 
Constraints help the algorithm avoid exploring uninteresting areas, resulting in a 
faster DSE process. They have been used extensively during our experiments (see 
Chapter 6). 

4.2 Hierarchical Parameters 

4.2.1 Motivation 

In many designs there are parameters which validate or invalidate another set of 
parameters. For example the parameter “branch predictor type” will validate or 
invalidate the parameters associated with a specific value of this parameter. If the 
branch predictor type is set to a two level adaptive predictor the active parameters 
might be table sizes, history length and other. If the branch predictor is a neural 
predictor then another set of parameters will be active. These might lead to problems 
during an evolutionary algorithm. 
 To solve this problem we proposed and developed an XML interface that 
allows the user to specify the hierarchy of parameters and also some new specialized 
genetic operators for crossover and mutation. 
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4.2.2 Adapting Genetic Operators 

4.2.2.1 Crossover 

The crossover operator receives the tree and two individuals. It switches from the 
current encoding of the individual to a tree encoding. At the same time it determines 
the valid and invalid edges. Crossover can be performed on edges that do not point to 
an invalid node or on the root nodes. 

4.2.2.2 Mutation 

The mutation operator is simpler. The individual to mutate is inserted in the tree and 
the array of binary values is extracted. One of the values is randomly picked and 
mutated. Of course this is done only taking into consideration the mutation 
probability. 

4.3 Introducing Domain-specific Knowledge through Fuzzy 
Logic 

In this paragraph we propose to use fuzzy rules for representing domain knowledge in 
an easy to use language by the designer that can be also understood by our DSE tool. 
As far as we know, we are the first ones to use fuzzy rules as a method to express a 
priori knowledge into a design space exploration tool for computer architectures. 

These rules allow us to write statements like: 
IF level 1 cache size IS small THEN level 2 cache size IS big 

4.3.1 Mamdani Rules-system 

From all the possible inference systems we have focused on the Mamdani inference 
system [22]. For this we have used the MIN and MAX functions for AND and OR 
respectively. For the implication we used the Mamdani implication (MIN). For 
consequent aggregation we used the MAX function [23][24]. 

4.3.2 Integrating Fuzzy Logic into FADSE 

4.3.2.1 FCL Language 

The Fuzzy Control Language (FCL) [25] has been used to describe fuzzy functions. 
FCL is a standard language for fuzzy control programming and has been published by 
the International Electrotechnical Commission (IEC) [26]. The language specification 
can be found in IEC document 61131-7. A draft version can be found at [25]. We 
integrated the jFuzzyLogic library [27] into FADSE to be able to use the FCL 
specification and the included inference systems. FADSE accepts as an input a file 
written in FCL. 

4.3.2.2 Mutation Operators 

To use the information provided by the fuzzy rules we had to change the genetic 
operators. 

4.3.2.2.1 Changing the Bit-flip Mutation Operator 

In this work the bit flip mutation operator was extended to take into consideration the 
information provided by the output of the fuzzy rules. 
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 The classical bit flip mutation is changed as follows: 
 
1. For all the variables (genes) in the individual (chromosome); 

1.1. If a fuzzy rule exists for this parameter 
1.1.1. Do mutation (with a certain probability) taking into consideration the 

information provided by fuzzy rules; 
1.2. Otherwise (do bit flip mutation); 

1.2.1. Generate a random number between 0 and 1; 
1.2.2. If the random number is smaller than the probability of mutation; 

1.2.2.1. Change the current variable to a random value; 
2. STOP. 
 
 The only change to the bit flip mutation algorithm is that: if the current 
variable is defined as an output variable in the FCL file then it switches to a different 
mutation. In this work we call this mutation: fuzzy mutation. 
 Two implementations will be discussed below: the so called constant 
probability implementation and an implementation based on a Gaussian distribution 
of probability. 

4.3.2.2.2 Constant Probability 

To preserve diversity, the information provided by the fuzzy rules is not always taken 
into consideration. To obtain this, a probability of applying the fuzzy information is 
used, called: fuzzy probability. 

In the simple implementation, this fuzzy probability is constant during the run 
of the algorithm and it is set to be equal with the probability of mutation.  

4.3.2.2.3 Gaussian Probability 

The fuzzy mutation operator computes membership of the output variable. Then it 
computes the center of gravity approximation of this membership function. This value 
is referred as COG in the following. For this COG the membership µ  value is 
computed. The current output variable is set to the value of COG with a certain 
probability (as we said before, we call it the fuzzy probability). 
 The fuzzy probability is a value that follows the right hand side of a Gaussian 
function. The objective is to have a high mutation probability at the beginning of the 
search algorithm. As the algorithm progresses (x from the equation below increases 
for each individual sent to mutation) the influence of the rules will not be so big. We 
have selected some values for the Gaussian function so that after 500 individuals sent 
to mutation the fuzzy probability should be equal with the mutation probability 
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 The range of the values of this function is between (mutation_probability, 1]. 
We have discovered from our experiments that for good results diversity must be 
preserved. A probability of 1 will not generate a diverse population. All the 
individuals will tend to respect the preference of the designer as he/she described it 
using the fuzzy rules. To avoid this, the function is multiplied by 0.8. 
 The membership µ  value of the value obtained after defuzzification is used 
here. We are using it as a measure of confidence. If the membership value is low then 
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it means we are in between intervals and the rules were contradictory (e.g. one wants 
to make the cache big, the other one wants to make it small). In this situation we 
decided to lower the probability to use the fuzzy information. The final probability is 
obtained using the following formula: 
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4.3.2.2.4 Random Defuzzifier 

There are special situations when the center of gravity based defuzzification methods 
do not provide good results. Such a case might happen when the input fuzzy functions 
have an almost rectangular shape. In this situation any value of the input will have a 
membership value equal (or almost equal) with 1. If the membership of the input is 
always 1, then the membership function from the consequent will be identical for all 
the inputs. This means that COG will return the same value each time. To avoid such 
situations we have developed a new defuzzifier inside jFuzzyLogic library. We called 
it: RandomDefuzzifer. This new defuzzifier chooses randomly a value from the output 
membership function but only if the intervals where the membership value is above a 
configurable threshold. 
 This defuzzifier has been used by us in Paragraph 5.5 where the membership 
functions are generated automatically and their shape is not trapezoidal. 

4.3.2.3 Virtual Parameters 

Rules provided by the computer designers are usually quite general (see 6.1 for more 
details about the SLVP): IF L1_Data_Cache IS big/small THEN SLVP_size IS 
small/big. 

The problem arises when the level 1 data cache size is not determined by a 
single parameter. The size can be determined by a couple of parameters: block size, 
number of lines, associativity. This means that the rule might have to be split into 
several rules. But defining the membership functions becomes very difficult. If a 
parameter is “big” but all the others are small in the end the cache size is small. 
Defining rules becomes harder. 

To solve situations like this one, we have implemented "virtual parameters". 
These virtual parameters are formed using a combination of other real parameters.  



“In theory, there is no difference between theory and practice. 
 But, in practice, there is.” 
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5 Multi-objective Hardware-software Optimization of 
the Grid ALU Processor 

 
In this chapter we present the results obtained with a superscalar processor developed 
at the Augsbug University and the associated code optimization tool. These 
represented the first real tests for FADSE and many of the features developed were 
requirements posed by these tools. 

This work is the result of collaboration between us and the Augsburg 
University through Professor Theo Ungerer and PhD student Ralf Jahr. The obtained 
results were published in conferences [28] [29] [30] (submitted) or presented at 
workshops [31]. 

5.1 GAP and GAPtimize Overview 

5.1.1 Description 

The Grid ALU Processor (GAP) is a single-core processor architecture developed to 
speed up the execution of single threaded programs. One big advantage of GAP is that 
it uses Portable Instruction Set Architecture (PISA) derived from a MIPS instruction 
set architecture. This means that GAP is able to run existing programs without any 

modification required. More 
details about the GAP 
processor can be found in 
[32] and [33]. 

The varied 
parameters and their 
domains are presented in 
Table 5.1-1.The size of the 
space is over 1 million 
(1016640) possible 
configurations. 

In conjunction with GAP, we used GAPtimize a post-link code optimization 
tool developed especially for this processor. GAPtimize works on statically linked 
executable files compiled with GCC for PISA. Some of the code optimizations 
implemented are: predicated execution, a special scheduling technique, inlining of 
functions [28], a software-assisted replacement strategy for the configuration layers 
supported by code annotations called qdLRU [34], static speculation [35].  

5.1.2 Objectives 

We have focused on two objectives for the GAP architecture: speed - described in 
terms of cycles per instruction (CPI) or cycles per reference instruction (CPRI) – and 
hardware complexity. The second objective we used is called complexity. This metric 
tries to give a comparable number that describes the hardware complexity of the GAP 
architecture. Together with Ralf Jahr we proposed this metric because GAP does not 
have a hardware implementation yet. Its purpose is to compare the hardware 
complexity GAP configurations.  

Table 5.1-1 Parameter space for GAP 

 Description Domain 

rC  Array: rows {4, 5, 6, 7, ..., 32} 

cC  Array: columns {4, 5, 6, 7, ..., 31} 

lC  Array: layers {1, 2, 4, 8, ..., 64} 

1cC  Cache: line size {4, 8, 16} 

2cC  Cache: sets {32, 64, 128, ..., 8192} 

3cC  Cache: lines per set {1, 2, 4, 8, ..., 128} 
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More details about these metrics can be found in our article presented at HPCS 
2011 International Conference [28]. 

5.2 Automatic DSE on the Hardware Parameters 

This work continues the design space exploration performed by Basher Shehan from 
University of Augsburg for his PhD thesis [36]. He has performed an extended DSE 
exploration and we try to see if better results can be obtained automatically. 

5.2.1 Methodology 

We are using NSGA-II algorithm for the DSE process. We used a crossover 
probability of 0.9, mutation probability was set to 1/(number of parameters) = 1/6 
~0.16. These values were recommended in [10]. Bit flip mutation, single point 
crossover and the binary tournament selection, proposed in [10], were used as 
operators. The population size was varied, to study its influence on the obtained 
results, from 12 to 100 individuals. 

We ran up to 200 generations but the results do not improve greatly after 50 
generations. The results presented in this chapter are obtained after 50 generations. 

We selected 10 of the 14 benchmarks used by Shehan to reduce the time 
needed to evaluate an individual of the design space. The 10 benchmarks are: dijkstra, 
qsort, tele-adpcm-file-decode, stringsearch, jpeg-encode, jpeg-decode, gsm-encode, 
gsm-decode, rijndael-encode, rijndael-decode. 

The results were obtained using 9 Intel Dual Core computers organized in a 
LAN located at the University “Lucian Blaga” from Sibiu, Romania. Other results 
were obtained using a virtual machine with 32 cores hosted by a supercomputer 
located at the University of Augsburg, Germany. These machines were used to obtain 
all the results for GAP and GAPtimize presented during this chapter. 

5.2.2 Results 

In our first experiments we studied the influence of the population size on the results. 
We changed the population size to 12, 24, 50 and 100. Good results were obtained for 
a population of size 50 and 100, so only they will be presented. 

We ran with each population size two times and computed the average 
hypervolume. We ran for 50 generations with a population of 100 and 100 generations 
with a population of 50 individuals. Comparing them using the generation count is not 
fair since at generation 10, for example, the run with a population size of 50 produces 
far less individuals than the run with a population size of 100. We computed the 
number of unique individuals produced by each run (reuse is taken into 
consideration). We plotted the hypervolume against the average number of 
simulations (see Figure 5.2-1). From this figure we can conclude that even if the run 
with a larger population sends more individuals to simulation it finds better results in 
the same amount of time. We further analyzed the results and concluded that a run 
with 100 individuals requires 30 generations to simulate the same amount of 
individuals as a simulation with 50 individuals over 100 generations. This means that 
the run with a population with a size of 100 individuals has a larger ratio of unique 
individuals produced at each generation. 

We analyzed the Pareto front approximation and saw that the run with a 
population of 50 did not (sufficiently) explore the area where the complexity is very 
low. 
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Figure 5.2-1 Average hypervolume comparison between runs with a population size of 100 and 

runs with a population size of 50 
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Figure 5.2-2 Coverage comparison between a DSE process with a population of 100 and another 

one with a population of 50 

 
We decided to compare the two runs using the coverage metric (see Paragraph 

2.4.3). According to the coverage (see Figure 5.2-2), the run with a population size of 
100 individuals has slightly better results. 

For the rest of the experiments we used the population size set to 100 
individuals. In Figure 5.2-3 we compare the results obtained by FADSE against the 
manually obtained results in [32]. In Figure 5.2-4 only a section of the total Pareto 
front approximation is depicted. Better results were obtained by FADSE than the ones 
obtained during the manual exploration. FADSE was able to find configurations 
having half the value of complexity at the same CPI. 

After analyzing the results, we observed that the rule of thumb (number of 
columns equal with number of rows) used in the manual exploration was not 
beneficial. The array of FUs had too much columns. We can conclude that FADSE 
can help the designer find better configurations. 
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Figure 5.2-4 Zoom on most interesting area 

(highlighted box in Figure 5.3-3) 

 
In Figure 5.2-3 the shape of the obtained Pareto approximated front tells us 

that configurations with a complexity above 1000 do not lead to a much higher 
performance. At this complexity, the configuration of GAP is: a matrix with 32 lines, 
11 columns and 32 configuration layers, a cache of 512kB. 

From the reuse point of view we can see in Figure 5.2-5 that the algorithm 
produces during the first generations many new individuals (i.e. individuals that were 
never generated before) and many of them are added to the population. As the 
algorithm advances, less and less new individuals are created (the rest are individuals 
that were already produced in the past) and, of course, even fewer of them survive to 
the next generation. Because of this, the reuse from the database is high. In a run with 
100 generations we have reached a reuse of 67%. This means a great time reduction 
for the DSE process. 
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Figure 5.2-5 Comparison between the number of newly generated individuals (offspring) and the 

number of them that actually reach the next generation 

 

 
Figure 5.2-3 Total result space 
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Figure 5.2-6 Evolution of the hypervolume value over the generations 

 
Figure 5.2-5 is correlated with Figure 5.2-6 where the evolution of the 

hypervolume value is presented. Since fewer individuals are accepted in the next 
population, the hypervolume value stops increasing. We can observe that the 
algorithm progresses fast during the first generations but then it converges to an 
approximated Pareto optimal front. 

5.2.3 Conclusions 

With this experiment we have demonstrated that: 
• FADSE can find better solutions than the human designer; 
• FADSE can cope with the large design space; 
• It is reliable since it was able to run for long periods of time on 
different systems: LANs and virtual machines with many cores; 
• The database integration accelerates the DSE process considerably 
(67% reuse). 
After careful analysis of the obtained results we concluded that GAP is a 

scalable architecture and that bigger caches do not cancel the effects of the ALU 
array. 

5.3 Automatic DSE on the Hardware and Compiler 
Parameters 

The increasing complexity of processor architectures makes it harder even for code 
optimization tools to find good parameters. Settings of the code optimizations might 
have to be substantially different for similar target platforms. We decided to use 
FADSE to solve this problem too. 

From the code optimizations included in GAPtimize we focused only on 
function inlining. The main challenge is choosing the right function callers which 
shall be replaced by copies of the function body. 
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5.3.1 Methodology 

We are using the same settings for the parameters as in previous section: 
- bit flip mutation with a probability of 0.16 (we fix the cache parameters 

and the number of configuration layers); 
- single point crossover with the probability to apply set to 0.9; 
- binary tournament selection; 
- population size 100. 
GAPtimize alone has a size of the space of 2.1*1010. Together with GAP the 

size of the design space is over 2.1*1016. We observed, from previous experiments, 
that function inlining accelerates GAP because it makes the instructions accessible 
faster. This is due to the fact that instructions already reside in the cache or in a 
configuration layer. A configuration of GAP with a large cache or with many 
configuration layers might not benefit so much from the function inlining 
optimization. Thus, we decided to restrict the cache size to 8kB and the number of 
configuration layers to 8. The size of the space with these restrictions is ca. 1.8 *1013. 

5.3.2 Results 

Our first test was to see if FADSE can cope with code optimizations. We decided to 
fix the hardware to a matrix with 12x12 functional units and optimize at first one 
single objective (CPRI). We selected dijkstra benchmark for this experiment. 

FADSE was able to find good parameters for function inlining and the 
execution time of the best found individual was reduced by 9.1% compared with the 
run with no optimization. 

Next, the number of benchmarks was increased to 10, but the hardware 
remained fixed, so we still have single objective optimization. The best set of 
parameters found by FADSE lead to a reduction of the execution time of 3.9%. The 
increase is not as significant as for dijkstra because not all the benchmarks are 
sensitive to function inlining. 

 
Figure 5.3-1 DSE of inlining and hardware parameters for 10 benchmarks, executed on GAP 

with NxNx8 array and 8 kb instruction cache 

  
We moved then to the true DSE process, were both hardware and compiler 

parameters are optimized at the same time. FADSE obtained very good results. In 
Figure 5.3-1 a comparison in the objective space between the results obtained with 
and without GAPtimize is depicted. The figure proves that a run with GAPtimize 
obtains better results and that FADSE is able to find good parameters for inlining. 
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5.3.3 Conclusions 

During the single objective optimization FADSE was in connection with the 
heuristics and able to perform inlining as an adaptive code optimization, thus 
providing good results. 

FADSE is also able to cope with hardware and software parameters, at the same 
time, and find good solutions even in a huge design space (1.8*1013 individuals) and 
can be used for code optimizations. 

5.4 Comparison between DSE Algorithms 

The results presented in this paragraph were published in our paper called 
“Optimizing a Superscalar System using Multi-objective Design Space Exploration” 
[29]. 

In this paragraph we are using GAP and GAPtimize to compare different 
heuristic algorithms. We focus on three algorithms: two genetic (NSGA-II and 
SPEA2) and one particle optimization (SMPSO). 

5.4.1 Methodology 

We use our classical configuration of the NSGA-II algorithm: bit flip mutation with a 
probability of 0.16, single point crossover with the probability to apply set to 0.9, 
binary tournament selection and a population size of 100 individuals. 

For SPEA2 we use the same operators and probabilities as for NSGA-II and 
we set the archive size to 100. 

For the particle swarm optimization algorithms we used a swarm size of 100. 
For the velocity computation we used the values recommended in [13]: 

- C1 and C2 are randomly chosen in the interval [1.5, 2.5]; 
- r1 and r2 are randomly chosen in the interval [0, 1]; 
- inertial weight W is fixed to 0.1. 
We have generated a random population and all the algorithms were started 

from this population. This way, a fair comparison between the algorithms can be 
performed. Due to time constraints (about 5 days per run) we could not afford to run 
multiple times and present average results. 

For the runs with GAP we decided to vary all six parameters. For GAPtimize 
we fixed the cache size and the number of configuration layers (see 5.3.1 for 
motivation). All the runs were performed on 10 benchmarks from MiBench suite. 

When running with GAPtimize, the benchmarks were compiled in GCC with 
function inlining deactivated, because GAPtimize does this code optimization. 

5.4.2 Results 

5.4.2.1 Results on GAP 

We began by comparing the three algorithms using only GAP. We ran all the 
algorithms up to generation 50. We computed the coverage for all the possible 
combinations. The first comparison was made between NSGA-II and SPEA2 (see 
Figure 5.4-1). Their results are similar for the first generations but then NSGA-II 
finds more individuals that dominate individuals obtained by the SPEA2 algorithm. 
The conclusion, we can draw from the coverage value over the generations, is that 
NSGA-II performs better than SPEA2. 
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Figure 5.4-1 Coverage comparison between NSGA-II and SPEA2 

 
Next we compared NSGA-II and SMPSO. In Figure 5.4-2 is illustrated the 

coverage value over the generations. SMSPO generates more individuals that 
dominate individuals found by NSGA-II. 

SMPSO seems to be the best algorithm from the coverage point of view. On 
both comparisons SMPSO has a great advantage over NSGA-II and SPEA2 during 
the first generations. This means that SMPSO converges faster to better solutions, as 

for NSGA-II and 
SPEA2 it takes more 
time to discover 
individuals of similar 
quality. 

We compared 
the algorithms from 
the perspective of a 
different metric: 
hypervolumne. The 
evolution of the 
hypervolume over 
the generations is 
shown in Figure 
5.4-3. The 
hypervolume gives 

information about the convergence of the algorithm. When the same reference point is 
used (see Paragraph 2.4.1), it can also give us a hint about the quality of results. We 
are using the same reference point so we can say from Figure 5.4-3 that SMPSO finds 
the best results. SMPSO reaches a hypervolume that is never reached by the two 
genetic algorithms. 

From a convergence point of view, the particle swarm optimization algorithm 
is again the best. It converges faster than the genetic algorithms. SPEA2 has a better 
start than NSGA-II but the latter obtains a better hypervolume value in the end. 

In the domain of computer architecture we are dealing with long evaluation 
times because simulators are used. Therefore it is important to count how many 
simulations each algorithm requires to reach a certain hypervolume. If an algorithm 

 
Figure 5.4-2 Coverage comparison between NSGA-II and SMSPO 
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generates the same individuals over and over again they can be reused from the 
database. Reusing the individuals means fewer simulations, thus less time required for 
the exploration time. 

First, we present the number of simulations performed by each algorithm to 
reach a certain generation (see Figure 5.4-4). We can see that the SMPSO algorithm 
performs more simulation compared to the genetic algorithms. NSGA-II does more 
simulations than SPEA2. Thus, to reach a certain generation, SMPSO and NSGA-II 
needed to perform more simulations. 
 

 
Figure 5.4-3 Hypervolume comparison between NSGA-II, SPEA2 and SMPSO 

 

 
Figure 5.4-4 This figure shows how many individuals were simulated to reach a certain 

generation. 

 
With this in mind we decided to compare the hypervolume from this point of 

view. In Figure 5.4-5, we plot how many individuals had to be simulated to reach a 
certain hypervolume. The ranking of the algorithms does not change. Even if the 
SMPSO algorithm requires more simulations, the quality of the obtained results 
justifies the effort. 

Figure 5.4-4 gives us data about the reuse percentage. During 50 generations 
(5000 evaluated individuals) SMPSO sent for evaluation ca. 4000 individuals. NSGA-
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II and SPEA2 sent ca. 2700, 1800 respectively. This means a 20% reuse for SMPSO, 
46% for NSGA-II and 63% for SPEA2. The reuse method incorporated into FADSE 
leads to a huge time reduction for the DSE process. 

SPEA2 tends to produce the same individuals again because it retains more 
duplicates in the archive than the NSGA-II algorithm. We already presented the 
reason for this in 2.1.4. SMPSO produces new individuals so often because all the 
particles are moved at each generation. SMSPO applies a sort of mutation on all the 
parameters (fly), not on only 1/(number of parameters) of them. 

Because SPEA2 retains many duplicates, the spread of solutions in the 
objective space is not so good, compared with NSGA-II and SMPSO. 

 
Figure 5.4-5 Hypervolume comparison of the three selected algorithms against the total number 

of evaluated designs 

 

 
Figure 5.4-6 Section of the Pareto front approximations obtained by each algorithm after 50 

generations 

 
We compared the Pareto fronts approximation found by the algorithms (see 

Figure 5.4-6). The figure presents only a section of the entire Pareto front. We 
decided to depict only this area because on the rest of the front there are almost no 
differences between the algorithms. 

It can be observed that SMSPO finds slightly better results on a small area of 
the Pareto front approximation between the complexities 100-180, while the 
complexities of all the solutions found by the algorithms range from 30 to 2000. Even 
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in this small area, the differences are minimal. The metrics might be misleading; 
showing a big difference between the algorithms, while in reality the difference is 
only marginal. Even so, the fact that SMSPO converges faster recommends him as a 
good algorithm for design space exploration. 

We decided to use the Two Set Difference Hypervolume metric (see 
Paragraph 2.4.2) to see how much of the space is really dominated by a single 
algorithm. The results can be seen in Figure 5.4-7. The highest value is obtained when 
we are comparing the SMPSO algorithm with SPEA2. The next two (in terms of 
value) comparisons are between SMPSO and NSGA-II and between NSGA-II and 
SPEA2, so this metric keeps the ranking showed by the other metrics. It also shows us 
that in fact only 0.001-0.002% of the entire hypervolume covered by the 
approximated Pareto fronts is dominated by the winning algorithms. 
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Figure 5.4-7 Comparison between the algorithms using the Two Set Difference Hypervolume 

(TSDH) metric 

5.4.2.2 Results on GAP with GAPtimize 

In this chapter we compared the three algorithms on GAP with GAPtimize. The same 
10 benchmarks were used as in previous section. 

We start with a coverage comparison between the two genetic algorithms. For 
the first 6 generations there is no much difference between the algorithms (see Figure 
5.4-8). From there on SPEA2 gains a huge advantage. By the end of the DSE process 
NSGA-II does not dominate any of the individuals found by SPEA2, while SPEA2 
dominates over 60% of the individuals discovered by NSGA-II. We selected SPEA2 
as the best algorithm and compared it with SMPSO using the coverage metric (see 
Figure 5.4-9). SMPSO has the best results, but the difference is not that big, as we 
have seen between SPEA2 and NSGA-II. 
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Figure 5.4-8 Coverage comparison between DSE runs with NSGA-II and SPEA2 
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Figure 5.4-9 Coverage comparison between DSE runs with SPEA2 and SMPSO 
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Figure 5.4-10 Hypervolume comparison between NSGA-II, SPEA2 and SMPSO considering the 

number of simulated individuals 

In this experiment, SPEA2 simulates least individuals to reach the same 
generation. NSGA-II performs around 1800 simulations in 29 generations. SMPSO 
generates the same amount of individuals in only 19 generations, while SPEA2 
requires 68 generations to reach that number. It must be noted that, after the 20th 
generation, the number of new individuals produced by SPEA2 decreases 



Multi-objective Hardware-software Optimization of the Grid ALU Processor 
 

 

Page 25 of 65 

dramatically (20 out of 100 individuals at generation 20 to 5 out of 100 at generation 
69). 

With this in mind we compared the hypervolume values (see Figure 5.4-10). 
SMPSO is still the best and also has the fastest convergence speed from the three.  

We analyzed the evolution of the Pareto fronts approximation (not showed 
here) and we concluded that during the generations the difference is not very big 
between the algorithms in terms of quality of solutions, as it was depicted by the 
coverage metric. 

Then, we compared the Pareto fronts approximation obtained by the three 
algorithms after around 1800 simulations (see Figure 5.4-11). There are not many 
individuals from other algorithms except SMPSO, in the figure, because they are 
overlapped. The algorithms obtain practically the same results. 
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Figure 5.4-11 Final Pareto front approximations obtained by NSGA-II, SPEA2 and SMPSO after 

1800 simulations 
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Figure 5.4-12 Two set difference hypervolume (TSDH) comparison between the algorithms 

 
Finally we compare the three algorithms (two by two) using the two set 

difference hypervolume metric – TSDH – (see Figure 5.4-12). The results only 
confirmed our conclusions. The difference between the results obtained by the 
algorithms is very small. For the first generations (until generation 7) SMPSO has 
better results revealed by a higher TSDH value, especially against NSGA-II. SPEA2 
also obtains better results compared to NSGA-II for the first generations. 
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5.4.3 Conclusions 

Analyzing the Pareto front approximations obtained by the three algorithms we can 
conclude that the differences are small. The biggest differences are not greater than 
1% in terms of CPI, and usually reside between 0.1% and 0.01%, at the same 
complexity. The difference between the algorithms comes in convergence speed. 

From the convergence speed point of view, the particle swarm optimization 
algorithm preformed the best, with a very high convergence speed. This confirms the 
results obtained in [13]. From the two genetic algorithms NSGA-II converged faster 
and found better solutions on GAP, but when GAPtimize was added SPEA2 
performed better, both in terms of convergence speed and quality of solutions. In 
terms off spread of the Pareto fronts approximations, SPEA2 was clearly the worse, 
with many duplicates in the final population (archive). 

An important conclusion we can draw from these experiments is that the 
coverage metric can be misleading. It can show a big difference between the 
algorithms while in real terms that is not the case. The problem is that it has no 
threshold for domination, even if the difference on one objective is very small the 
individual is still considered dominated. Coverage with such a threshold must be 
considered for real problem optimizations. Such metrics are proposed in [15]. 
Hypervolume does help the user to observe the convergence speed of the algorithms. 
It also gives some information about the quality of the solutions when multiple 
algorithms are shown in the same figure and a single hypervolume reference point is 
used. However, the difference between the values of the hypervolume should not be 
considered. Hypervolume two set difference tries to give a little more information 
about how much of the space is actually dominated by a single algorithm, but it can 
also be misleading because the values are dependent on the position of the 
hypervolume reference point and can not be taken into consideration very seriously. 
Because the true Pareto front is unknown, finding a metric that correctly compares 
algorithms is difficult. We recommend that the user should look at the obtained Pareto 
fronts and draw a conclusion based on his/hers experience. 

5.5 Automatically Generated Rules from Previous Exploration 

This work extends the fuzzy logic integration with FADSE. The purpose is to obtain 
the rules automatically from previous simulations. The idea is that a user can run a 
design space exploration process on a single short benchmark. Obtain results for that 
benchmark, extract rules and apply these rules on the design space exploration 
process with multiple/long benchmarks. The second situation where this can be 
applied is when a company builds a processor and performs the DSE. A client might 
come and want to optimize that architecture for a specific task. Or the producer wants 
to add a new feature to the design. The company could extract knowledge from its 
previous exploration and offer it to the client so it can accelerate his DSE. From this 
we can see two possible situations: when the data is extracted from a single 
benchmark and then applied to multiple benchmarks (called by us “special to 
general”) and when data is extracted from multiple benchmarks and applied to a 
specific task. 

The results from this paragraph are from our article "Boosting Design Space 
Explorations with Existing or Automatically Learned Knowledge" [30]. 
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5.5.1 Methodology 

Ralf Jahr’s idea was to use machine learning techniques to calculate decision trees. 
These trees were then translated into rules. This way a feed-back loop to 
automatically make use of results obtained in prior DSE runs was created. 

We performed tests with both implementations for the fuzzy mutation (see 
4.3.2.2) and concluded that better results are obtained with the Gaussian distribution 
of probability to use the information provided by the rules. 

With this system, rules for the M-SIM simulator (see Chapter 6 for more 
details) were generated. We had good results in terms of finding the rules, but they 
were not used during a DSE process. 

For FADSE we use a similar configuration as in previous chapters: population 
size of 50 individuals, single point crossover with a probability of 0.9, fuzzy bit flip 
mutation with a Gaussian probability to apply the fuzzy rules, the mutation 
probability is set to 0.16. We are using the same selection of 10 benchmarks from the 
MiBench suite. 

5.5.2 Results 

In our first test we start from a single benchmark, extract the rules and then run with 
these rules on all the benchmarks. As the single benchmark we have selected 
stringsearch. This benchmark is one of the smallest in the MiBench suite. 

With the selected benchmark, we performed a DSE and obtained 1100 unique 
individuals. We used the classification method presented in Chapter 5.5.1 and 
extracted the rules. 

 
Figure 5.5-1 Special to general experiment 

 
With the obtained rules we run the full design space exploration (10 

benchmarks). To provide a fair comparison we ran with and without the rules five 
times up to generation 40. Each time we start from a random initial population. 

In Figure 5.5-1 the average hypervolume obtained by the runs with and 
without rules is presented. The run with rules obtains better results: it converges faster 
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and also reaches a hypervolume value higher than the one obtained by the run without 
rules. 

With this technique we have obtained a 50% reduction in the time required to 
obtain the same quality of results. The DSE process with a single benchmark is very 
quick. Then the run with the extracted rules converges much faster: at generation 11 
the hypervolume obtained by the run with rules is equal with the hypervolume 
obtained without rules after 24 generations. 

The next possible situation is to start from a previous exploration and then 
optimize the architecture for a certain benchmark. We used these rules to optimize 
GAP for two application domains: one for image encoding/decoding with JPEG, the 
other is encrypting/decrypting data with the Rijndael algorithm (AES) from the 
MiBench suite. 

 
Figure 5.5-2 Hypervolume JPEG 

 
For both benchmarks FADSE is ran for 40 generations five times. 
The average results for JPEG are shown in Figure 5.5-2, for Rijndael in Figure 

5.5-3. The obtained results are again better than the ones obtained without rules. The 
results are especially good for JPEG. The hypervolume enclosed by the individuals 
found during the DSE process is higher with rules than without for all the generations. 
Using rules leads to a faster convergence, and also the quality of the results obtained 
with rules is never achieved (during the 40 generations) by the runs without rules. 
From the convergence point of view, we can see in Figure 5.5-2 that the hypervolume 
achieved with rules after 3 generations is achieved without rules only after 11 
generations. In our situation a generation can last for about 3-4 hours, but with other 
simulators this might mean days of simulation saved. 

For Rijndael, the start is from a lower hypervolume, but with rules it manages 
to overcome this drawback and to surpass the runs without rules. Again the 
hypervolume reached for Rijndael with rules is never reached by the run without 
rules. 

Experiments with a constant probability to apply fuzzy rules were also 
conducted, but the results were not so good. It seems that the high number of 
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available rules, combined with many membership functions associated to each 
parameter, leads to very good results and helps maintaining the diversity. In Chapter 6 
we observed that runs with constant probability work better when the rules do not 
cover so much of the available parameters. 
 

 
Figure 5.5-3 Hypervolume Rijndael 

5.5.3 Conclusions 

In this chapter, we proved that the fuzzy rules interface provided by FADSE can be 
extended to use other interesting ideas. Rules are automatically generated from 
previous explorations using data mining techniques and injected into FADSE through 
the fuzzy rule system. This approach might be useful in several situations: when we 
can run a single benchmark, extract the rules and then apply the learnt information in 
a broader (more time consuming) design space exploration. The other situation is 
when the architecture has already been optimized for general applications but we want 
to optimize it for a specific application. The information gained from the previous 
exploration can be used and it will accelerate considerably the DSE process. 

5.6 Running with Hierarchical Parameters 

When combining multiple code optimization passes, one has to keep in mind that the 
design space to explore grows dramatically making it very hard to find very good 
solutions. The design space increases even more if also the order of the passes is 
considered. Nevertheless, it is possible that combinations of optimizations lead to 
even higher performance gains compared to the performance gains of the individual 
optimizations. Hence it is important to incorporate optimization techniques as already 
mentioned at the start of this chapter. Beyond this, when analyzing the parameter 
vector consisting of all parameters, one will come to the conclusion that it is a 
common approach to have flags turning optimizations on and off. These flags have an 
important role, as they can remove any influence and importance of the parameters for 
an optimization if it is disabled. Hence the algorithm for the DSE should keep this in 
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mind and not generate on and on individuals with different "genes" but the absolutely 
same "phenotype", i.e. the same program binary. 

In the case study all three optimizations (function inlining, static speculation, 
qdLRU) can be turned off an on. 

5.6.1 Methodology 

This chapter presents preliminary results obtained with FADSE and hierarchical 
parameters. We started developing the hierarchical parameters especially for this 
experiment, but the work is still in progress at the time of writing this thesis. 

We used the NSGA-II algorithm with the usual parameters: population size 
100, mutation probability 1/number of parameters. Because we wanted to test the 
efficiency of the hierarchical parameters we ran with and without this information. 
We used bit flip mutation (1/number of parameters probability) and single point 
crossover (0.9 probability to apply it) for the classical run. When running with 
hierarchical parameters the difference is that we are using the special mutation and 
crossover operator presented in Paragraph 4.2.2. We ran the experiment for 40 
generations. 

One benchmark was run until now: quick sort from the MiBench suite. 

5.6.2 Results 

The preliminary results obtained for quick sort are shown in Figure 5.6-1. It can be 
seen that the run with the hierarchical parameters obtained better results than the run 
without this information. 
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Figure 5.6-1 Hypervolume comparison between the run that considered the information about 

hierarchical parameters and the one that did not 

 
More simulations will be performed, on several benchmarks to draw a final 

conclusion about the influence of these hierarchical parameters, but the results are 
promising. 



“The best way to escape from a problem is to solve it.” 
 

Alan Saporta 

Page 31 of 65 
 

 

6 Multi-objective Optimization of the Mono-cores and 
Multi-cores Architectures 

 
This chapter continues the work performed by Dr. Árpád Gellért in his PhD thesis 
[37] and some subsequent articles [38][39]. We took his manual design space 
exploration performed on a Simultaneous MultiThreaded (SMT) architecture and 
extended it to multiple parameters with the use of FADSE. Afterwards, we moved to 
multi-core architectures as well. 

We try to improve the results obtained by FADSE through different methods of 
including domain-knowledge in the DSE algorithms. 

6.1 M-SIM Simulator Overview 

M-SIM [40] is a cycle accurate processor simulator based on SimpleScalar 3.0d [41]. 
It allows multi-threaded [42] micro-architectural simulation. The target architecture is 
a superscalar Alpha AXP 21264. 

M-SIM integrates the Wattch framework [43] for power consumption 
estimation. It is able to run benchmarks from suites like: SPEC 2000 [44], SPEC 
2006, MiBench, Mediabench, etc. 

All our simulations were performed on the SPEC 2000 benchmarks. We have 
selected six integer benchmarks (bzip, gcc, gzip, mcf, twolf and vpr) and 6 floating-
point benchmarks (applu, equake, galgel. lucas, mesa and mgird). 

In this chapter, we are presenting evaluations on two versions of the M-SIM 
simulator: version 2.0 and 3.0. The difference between them is that M-SIM 3 allows 
multi-core simulation (only independent tasks). 

The base configuration of the M-SIM simulator is depicted in Table 6.1-1. 
 

Table 6.1-1 M-SIM baseline configuration 

Execution unit Number of units Operation latency 

intALU 4 1 
intMULT / intDIV 1 3 / 20 
fpALU 4 2 

Execution Latencies 

fpMULT / fpDIV 1 4 / 12 
Superscalarity Fetch / Decode / Issue / Commit  width = 4 
Branch predictor bimodal predictor with 2048 entries 
Selective Load Value 

Predictor (SLVP) 

1024 entries, direct mapped, access latency: 1 cycle, prediction latency: 3 
cycles (2 cycles L1 data cache tagging + 1 cycle SLVP access) 
Memory unit Access Latency 

64 KB, 2-way associative L1 data cache 1 cycles 
64 KB, 2-way associative L1 instruction cache 1 cycles 
4 MB, 8-way associative unified L2 cache 6 cycles 

Caches and Memory 

Memory 100 cycles 
Register File: [32 INT / 32 FP]*8 
Reorder Buffer (ROB): 128 entries Resources 

Load/Store Queue (LSQ): 48 entries 

 
In Árpád Gellért PhD thesis, a novel selective load value prediction (SLVP) 

mechanism is introduced [39]. The idea is to predict long latency instructions (loads) 
that miss in the level 1 data cache. Árpád Gellért and his colleagues proved that the 
SLVP can increase performance and reduce the energy consumption [38]. He has 
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performed a manual design space exploration is his work and only two parameters 
(number of sets in the level 1 cache and the level 2 cache) were varied from the 
baseline architecture, thus good configurations might not be found. 

We decided to vary more parameters. They are depicted in Table 6.1-2 along 
with the upper limits and the lower limits we have imposed. 

 
Table 6.1-2 Parameters of the M-SIM simulators 

Parameter Lower limit Upper limit 

Sets 2 32768 
Block size (bytes) 8 256 DL1 cache 
Associativity 1 8 
Sets 2 32768 
Block size (bytes) 8 256 IL1 cache 
Associativity 1 8 
Sets 256 2097152 

Block size (bytes) 64 256 UL2 cache 
Associativity 2 16 

SLVP (entries) 16 8192 
Decode/Issue/Commit width 2 32 
ROB size (entries) 32 1024 
LSQ size (entries) 32 1024 
IQ size (entries) 32 1024 
Number of physical register sets (int/fp)   2/2 8/8 
Integer ALU 2 8 
Integer MUL/DIV 1 8 
Floating point ALU 2 8 
Floating point MUL/DIV 1 8 

 
These 19 parameters generate a design space of over 2.5*1015 (2.5 millions of 

billions) and makes an exhaustive search impossible, therefore FADSE was 
employed. 

6.2 Optimizing M-SIM 2 Architecture 

The purpose of this work is to try to find better configurations than the ones obtained 
by Árpád Gellért et al. Since only a few parameters were varied there, we want to 
prove that the SLVP scheme leads to lower energy consumption at the same CPI for 
other, closer to optimal, configurations. This work has been submitted to IET 
Computers & Digital Techniques [45]. 

6.2.1 Methodology 

Evaluating the architecture on a single benchmark takes a couple of hours. Thus, we 
have decided to reduce the number of simulated dynamic instructions from 1 billion 
to 500 million (first 300 million instructions are skipped). This means that 24 hours 
are required to simulate a configuration (individual) on all the benchmarks. 

Because of this change, we had to redo the manual exploration performed by 
Árpád Gellért in his PhD thesis. We kept the same settings: 80nm CMOS technology 
and a 1.2 GHz frequency for simulation. Gellért used IPC in his simulations we have 
switched to CPI (1/IPC) to have both objectives (speed, energy consumption) 
minimized. 
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The power modeling methodology used by the simulator is presented in more 
detail in [43]. 

For FADSE, we used the following parameters: population size was set to 100 
as recommended in [10]. For mutation, we used bit flip mutation with a probability of 
1/(number of varied parameters). We varied 19 parameters and as consequence we set 
the mutation probability to 0.05. Single point crossover was selected and the 
probability to apply crossover was set to 0.9 (as specified in [10]). For selection the 
binary tournament selection operator described in [10] was used. The mutation 
operator was changed for the runs with fuzzy information as described in 4.3.2.2. We 
limited the runs to 25 generations due to time constraints. 

The number of generations was selected after analyzing the first runs taking 
into consideration the following stop criterion: we observed the hypervolume 
progress. If there was no progress for at least X generations, we considered that the 
algorithm has converged. To measure the progress we used the following formula: 

∑
=

−−=
X

i
ikk HHogressPr

1

)(  

where Hk is the hypervolume of the current generation k, X ≤ k. When this sum is 
smaller than a specified threshold θ the algorithm was stopped. 

6.2.1.1 Manual Exploration 

We doubled, halve, quarter and eighth the L2 cache size. For the L1 cache size we 
divide it by 2, 4 and 8. The initial sizes are the ones considered in the baseline 
architecture (see Table 6.1-1). We are using the following notations: mUL2_nDL1 
means a configuration using m*4 MB 8-way associative unified L2 cache (m=2, 1, 
1/2, 1/4, 1/8) and n*64 KB 2-way associative L1 data cache (n=1, 1/2, 1/4, 1/8). 

This manual exploration is not the main purpose of this experiment but the 
optimal configurations found are used in the following experiments. 

In Figure 6.2-1, the relative CPI reduction obtained with a SLVP with 1024 
entries is depicted against a configuration without the SLVP scheme. We can see 
that the L2 cache can be reduced to its half size and the level 1 cache can have a size 8 
times smaller and we still gain performance over the baseline architecture. In Figure 
6.2-2 we can see that this reduction of the cache size leads to lower energy 
consumption. From the CPI point of view, reducing the level two cache size, to more 
that half the original size, decreases the performance.  
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Figure 6.2-1 Relative CPI reduction reported to UL2_DL1 without SLVP as baseline 
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 The same idea is used when we are looking at the energy reduction (see Figure 
6.2-2). In this figure, the relative energy increase is shown against a configuration 
without SLVP. The SLVP can be used in conjunction with smaller caches and 
important energy reductions are obtained. It is interesting that the energy reduction is 
lower in the case of reducing the L2 cache to 1/8 than in the case of quartering it. This 
happens because when the L2 cache is reduced by a factor of 8, the static energy 
decreases, but at the same time, the miss rate increases which leads to a higher energy 
consumption. The optimal configuration from the energy point of view is: a quarter of 
the L2 cache (2 MB) and an eighth of the L1 data cache (8 KB). 
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Figure 6.2-2 Relative energy reduction reported to UL2_DL1 without SLVP as baseline 

 
From this experiment, we extracted the optimal configurations (from our point 

of view) we have found. The best configuration in terms of CPI is 2UL2_DL1. The 
best in terms of energy consumption is 1/4UL2_1/8DL1. We constructed a Pareto 
front with these configurations and chosen some configurations that are good taking 
into consideration both objectives, they are: 1/2UL2_1/2DL1 and 1/2UL2_1/4DL1. 
We will use these configurations in our future experiments as starting points for the 
automatic design space exploration. 

6.2.1.2 Running Without Any Information 

We first started FADSE together with M-SIM2 simulator with no prior information. 
FADSE was started from a random initial population. We varied the parameters 
described in Table 6.1-2 with the hope to find better configurations than the ones 
found by manual exploration. To avoid infeasible configurations (either impossible or 
known to provide bad results) we have used the following constraints: 
 

UL2 > DL1 + IL1 
UL2_bsize ≥ DL1_bsize 
UL2_bsize ≥ IL1_bsize 
 

where UL2_bsize, DL1_bsize and IL1_bsize are the block sizes for the unified L2 
cache, L1 data cache and L1 instruction cache, respectively. 

The size of the caches was also limited between the following borders: 
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DL1: 16 KB - 1 MB 
IL1: 16 KB - 1 MB 
UL2: 1 MB - 8 MB 
 
The design space obtained with these restrictions had a size of 3.8*1013. 
While analyzing the results (see 6.2.2) we have observed that the constraints 

used were too restrictive and that FADSE was not able to explore regions with low 
energies (smaller caches). Because of this, we relaxed the borders of the caches 
allowing FADSE to search in a larger space. The minimum cache capacities allowed 
were reduced: 
 

DL1: 4 KB - 1 MB 
IL1: 8 KB - 1 MB 
UL2: 256 KB - 8 MB 

 

The design space is reduced to 3% of the initial space, meaning 7.7 *1013 (77 
thousands of billions) feasible configurations. 

For all the runs we forced the initial population to be comprised of only 
feasible individuals and the offspring populations to have at least 80% feasible 
individuals. 

6.2.1.3 Running With an Initial Population 

FADSE was started with some good configurations inserted in the initial population. 
The relaxed borders presented in section 6.2.1.2 are used in this experiment. The main 
idea is to start from a better point in space hoping that better configurations could be 
reached in the same amount of generations, or better results could be reached faster. 

We selected the optimal configurations, found during the manual exploration 
(see 6.2.1.1), and inserted them in the initial population. From Figure 6.3-1 and Figure 
6.2-2 we concluded that the best configuration in terms of CPI is 2UL2_DL1, the best 
configuration in terms of energy consumption in 1/4UL2_1/8DL1. We also selected 
other two configurations which are optimal from both CPI and energy viewpoints: 
1/2UL2_1/2DL1 and 1/2UL2_1/4DL1. The vicinities of these four configurations 
were inserted. The vicinities were obtained by varying the SLVP size, L1 data cache 
size and L2 unified cache size one step up and down.  

FADSE was started again with our 24 selected configurations: the “optimal” 
manual configurations and their vicinities (some of them are overlapped). The rest of 
the population (up to 100 individuals) was filled with random individuals. 

6.2.1.4 Running With Fuzzy Rules 

For this set of experiments, we developed some fuzzy rules derived from our 
experience in computer architecture design and started FADSE with them. We tested 
both mutation operators (constant/Gaussian probability to apply fuzzy information) 
implemented in FADSE when fuzzy information is available. FADSE was started 
from a random population and with the same relaxed borders used in previous 
chapters. The rules used in the experiments are: 
 

IF Number_Of_Physical_Register_Sets IS small/ big THEN Decode/ Issue/ 
Commit_Width IS small/ big 
IF SLVP_size IS small/ big THEN L1_Data_Cache IS big/ small 
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The rules are presented here in a simplified form. In the FCL file they are 
described using 14 rules. We used 2 membership functions for each parameter, one 
associated to the linguistic term small, the other one to big. 

Virtual parameters were used to describe the L1 data cache (see Chapter 
4.3.2.3). 

The Mamdani inference system was used (as described in 4.3.1). 

6.2.2 Results 
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Figure 6.2-3 Pareto fronts comparison of the first runs 

 
In Figure 6.2-3 the first runs are compared: initial run, the run with relaxed 

borders and run with good individuals inserted in the first population. In terms of CPI 
all the runs obtain better results than the manual run. From an energy point of view 
some of the configurations found during the manual exploration are better than the 
ones obtained during the initial run (before relaxing the constraints – see Section 
6.2.1.2). 

Relaxing the borders leads to very good results. The found configurations are 
better on both objectives compared with the manual exploration. The results are 
evenly distributed along the Pareto front approximation. 

The last run depicted in Figure 6.2-3 is the run with initial good 
configurations. It finds better configurations than the manual exploration and 
outperforms the initial run, but it is not able to find good configurations from the 
energy point of view as the run with relaxed borders. It can be observed that the run 
with initial good configurations finds better results in the in the vicinity of energy 
1.20E+10 [ cyclesW ⋅ ]. 

The run with initial good configurations does not have such a good 
distribution of the results (is not able to search the area with low energy) because of 
the loss in diversity. At the beginning of the algorithm, the initial good configurations 
are much better than all the random individuals inserted in the population. In the 
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following generations only these good configurations survive, but they are not very 
different because they were obtained by varying only 2 from the total of 19 
parameters. The mutation operator, with a probability of 0.05 of changing one 
parameter, is not able to change too much the individuals and, as a result, the 
algorithm stops in a local minimum. We analyzed the evolution of the Pareto front 
approximation over the generations to reach this conclusion. 
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Figure 6.2-4 Pareto front comparisons between the run with fuzzy rules and the run with relaxed 

borders 

 
From the previous results, we selected the run with relaxed borders as the 

reference run (called run without fuzzy information in the future) because it obtained 
the best overall results. It must be noted that all the runs except the first run use the 
relaxed borders, but are called differently. 

In Figure 6.2-4, we compared the run without fuzzy information with the run 
with fuzzy information (constant probability to apply the fuzzy rules). The run with 
fuzzy information provides better results especially in the vicinity of energy 1.20E+10 

[ cyclesW ⋅ ]. 
We also compared the run with fuzzy rules with the one with initial good 

configurations and we observed that the later obtains a few individuals which are 
slightly better. 

The last Pareto front approximation comparison is made between the two 
fuzzy runs (see Figure 6.2-5). In this experiment the run with a constant probability to 
apply the fuzzy rules provides better results, especially in the area with low energies. 
We can assume that here, like in the run with initial good configurations, there is a 
loss in diversity. Having a chance of around 80% of applying the rules during the first 
generations, might lead to very similar individuals. Of course, the situation is not as 
bad as with the run with initial configurations. In this situation the rules affected only 
4 parameters (cache parameters and register file size), as in the run with initial good 
configuration 16 of them were fixed for the manually inserted individuals. 
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Figure 6.2-5 Pareto fronts comparison between the runs with fuzzy rules 
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Figure 6.2-6 Hypervolume comparison 

 
As a final comparison, we computed the hypervolume obtained by all the runs 

during the DSE process (see Figure 6.2-6). This graph gives us information about the 
convergence of the algorithm and about the quality of results. Except the initial run, 
the algorithm tends to stop the rapid evolution after generation 15. 
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After analyzing the evolution of the hypervolume values, we can conclude 
that: 

- The initial run with restricted borders is not able to find so good 
configurations, the volume covered by the obtained Pareto front 
approximation is the smallest; 

- Running with relaxed borders increased the quality of results considerably 
even if the design space is larger by a factor of two, from 3.8*1013 to 
7.7*1013. This is the reason we have decided to use the relaxed borders in 
all the following experiments presented in this chapter; 

- Starting with some initial good configuration can lead to a fast 
convergence and good results. Still, we observed that the results where 
grouped only on a part of the objective space, therefore this run falls in a 
local minimum. This happens because the initial configurations we have 
provided are very similar. From the 19 parameters we vary, only two of 
them differ between configurations (number of sets in level 1 and level 2 
cache). Problems can be observed at generation 14 and especially after 
generation 23 where the hypervolume value starts to decline; 

- Running with fuzzy rules, with a constant probability to apply them, leads 
to the best results, both in terms of convergence speed and quality of 
results; 

- Switching to a Gaussian distribution of probability to apply the fuzzy rules 
leads to worse results. We concluded that the high probability to apply the 
fuzzy rules lead to a loss in diversity because we have only a few rules 
with only two membership intervals associated. This means that all the 
individuals will have the affected parameters very similar. This behavior is 
enforced for the first generation and the fall back mutation operator is not 
able to maintain the diversity. In Paragraph 5.5, we also used both methods 
to compute the probability to apply the fuzzy rules. In that case, better 
results were obtained with the Gaussian probability. We can explain this 
through the fact that there were many rules affecting many parameters and 
with many membership intervals (associated linguistic terms). So, even if 
the rules pushed the configurations in certain areas of the design space, the 
diversity of the rules meant that the configurations resulted after the 
transformation were different. 

If we look at the value of the hypervolume at the first generation, for all the 
algorithms we can conclude that some extra knowledge makes the algorithm start 
from a better initial population (obvious for the run with initial configurations). Even 
from this, the algorithms do converge faster. 

In terms of time reduction, when using fuzzy rules, we can observe that the 
hypervolume, obtained by the run with extra knowledge at generation 15, is reached 
by the run with relaxed borders only at generation 24. Running a generation takes 
around 24 hours on 96 cores belonging to an Intel Xeon powered HPC system, 
running at 2GHz. This means that the time required to reach the same quality of 
results is obtained 9 days earlier. Running with fuzzy rules thus lead to the same 
quality of results 36% faster, this is a great improvement over the base algorithm. 
Even more, the hypervolume reached by the run with fuzzy rules is never reached by 
the other runs during the 25 generations. 

To reach generation 25 all the runs evaluate around 2200 individuals. This 
means a reuse factor of 12% which translates in time reduction for the DSE process 
(almost three days faster than without a database for 25 generations). The reuse is 
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quite low compared with what we have obtained in Chapter 5 where a reuse of over 
60% has been obtained. The lower reuse factor is determined by the huge design 
space which makes the algorithms capable of generating new individuals at each 
generation. 

6.2.3 Conclusions 

From the manual exploration, we can conclude that the integration of the SLVP in the 
architecture lead to a better energy consumption at the same CPI because the cache 
sizes can be reduced. We analyzed the results obtained by the automatic design space 
exploration process and drawn the same conclusion: with an integrated SLVP the 
caches can be smaller than in the baseline architecture. 

FADSE was able to find good configurations, even if the number of simulated 
individuals was 2200 from a total of 77 thousands of billions constrained design space 
(about 3*10-11%), better than the ones obtained by Árpád Gellért. 

Adding extra knowledge improves the results: it helps the algorithm to find 
better results and also to find them faster. Starting from an initial population with 
known good configurations, leads to a higher convergence speed. Here some 
problems were encountered: if the initial configurations are not diverse enough the 
algorithm might eventually fall in a local minimum. Fuzzy information can provide 
good results if used wisely: if there are few rules available the constant probability 
should be used. If the rules have many membership intervals then a Gaussian 
probability to apply them might lead to better results. 

6.3 Optimizing M-SIM3 Architecture 

Our next objective was to move to a multi-core architecture. We analyzed many 
simulators (see Paragraph 6.4) that support multi-core modeling but we were unable 
to find one that outputs power consumption or area integration (besides IPC/CPI). 
Since we are focusing on multi-objective optimization we choose M-SIM 3 as 
simulator since it is the only one that provides multiple (conflicting) objectives. 

The parameters for the M-SIM 3 simulator are the ones presented in Table 
6.1-1 and Table 6.1-2. For the multi-core configurations we have two identical cores. 
As objectives, we try to optimize the same ones as for M-SIM 2 (see Paragraph 6.2): 
energy and CPI. 

6.3.1 Methodology 

The same methodology as for M-SIM2 has been used: 
- NSGA-II algorithm; 
- Population size 100; 
- Bit flip mutation with a probability of 0.05; 
- Single point crossover with a probability to apply crossover of 0.9. 
First, we ran M-SIM 3 as a single core with the same benchmarks as M-SIM 

2. The difference from the previous explorations is that we forced only the first 
generation to be comprised from feasible individuals. For the rest of the design 
process we are not forcing any number of feasible individuals (individuals that respect 
all the constraints) in the offspring population. 

The next step was to move to a multi-core architecture. We paired the 
benchmarks used in the previous section in the following way: {twolf, vpr}, {applu, 
equake}, {bzip2, gcc}, {galgel, lucas}, {gzip, mcf}, {mesa, mgrid}. The benchmarks 
were selected as in [39] with the exception that parser is replaced with mcf in our 
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work due to some incompatibilities with the HPC system used during simulation. The 
SLVP implementation has not been used because it is not integrated into M-SIM 3 
yet. 

The connector implemented for M-SIM 3 (with the help of student Camil 
Băncioiu) can be configured to accept homogeneous and heterogeneous 
configurations. For a homogeneous multi-core, the user has to specify a single set of 
parameters and then the connector applies the same values for all the cores. If a 
heterogeneous architecture is required, the user has to specify all the parameters in the 
input XML file and they will be varied by FADSE. Since the design space is huge and 
running a single generation took more than 36 hours, we decided to run this 
experiment while simulating a homogeneous multi-core, to reduce the number of 
possible configurations. 

6.3.2 Results 

In our first test we ran with M-SIM 3 as single core. In Figure 6.3-1 the evolution of 
the hypervolume can be seen. The shape obtained is slightly different from what we 
have obtained in all our previous explorations. For the first 5 generations the 
evolution of the hypervolume is not typical. We examined the individuals from the 
offspring population and concluded that over 60% of them are infeasible. This 
percentage decreases to 50% at the last generation, but still many are infeasible. This 
means that the number of offspring, from which the algorithm can choose good 
individuals, is not very high, which translates in a lower convergence speed. The time, 
required to evaluate an entire generation, is also reduced because the individuals are 
tested if they respect the rules before sending them to evaluation. The small number 
of feasible individuals explains the results from Figure 6.3-2. The number of accepted 
individuals in the next population is depicted against the number of new individuals 
generated (infeasible included). We can observe that the number of accepted 
individuals is not larger than 30, even at the second generation (the first generation is 
always 100 since all the individuals form the next parent population). 
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Figure 6.3-1 Hypervolume obtained for the M-SIM 3 configured as a mono-core 
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Figure 6.3-2 Number of unique offspring individuals versus the number of accepted individuals 

in the next population – mono-core run 

 
This run with a mono-core processor on M-SIM 3 was our first experiment 

with this simulator and with constraints in general. It determined us to implement a 
technique to force a certain percentage of feasible individuals in the offspring 
population. 

The next experiment presented in this chapter is the exploration of a dual-core 
architecture. In this experiment, we forced the minimum feasible number of 
individuals in the offspring population to 80%. The evolution of the hypervolume 
presented in Figure 6.3-3 shows the convergence of the algorithm. Compared to 
Figure 6.3-1, the evolution is more smoothly. A difference from previous exploration 
can be seen when comparing Figure 6.3-2 with Figure 6.3-4. In Figure 6.3-4 around 
60 individuals are accepted in the next population during the first generation. Only 
after 13 generations the number decreases to the number of individuals accepted in 
the previous exploration since the second generation. 

In this exploration we observed an 18% reuse. The lower reuse is explained by 
the very large design space. It is visible that in Figure 6.3-4 the algorithm produces 
almost 80 new individuals even at the last generations. 

With this last exploration we proved that FADSE can be used with multi-core 
simulators and can run for extended periods of time (over a month). 
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Figure 6.3-3 Hypervolume obtained for the M-SIM3 configured as a multi-core 
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Figure 6.3-4 Number of unique offspring individuals versus the number of accepted individuals 

in the next population – multi-core run 

6.4 Multi-core Simulators Considered for Optimization 

Multiple multi-core simulators were considered for an optimization using FADSE. 
We have analyzed all these simulators to try to find their strong points and their 
weaknesses. An overview is done in this chapter. 

6.4.1 UNIted SIMulation Environment 

UNIted SIMulation environment (UNISIM) [46] was the first multi-core simulator we 
used. The UNISIM simulator contains two major parts: a cycle-by-cycle simulator 
and a transaction level modeling (TLM) simulator. 

The cycle-by-cycle simulator models a multi-core 32 bit PowerPC 405 RISC 
architecture with a 5 stage pipeline and separated data and instruction caches (Harvard 
architecture). The cycle-by-cycle simulator could not be configured using a command 
line. To influence the parameters (cache size, number of CPUs, etc.) the code had to 
be changed. We have developed our custom tool that could receive parameters from 
an external source generate the required code automatically, inject it into the 
simulator source code, compile the simulator and then run the configuration with the 
specified benchmark. 

To run parallel benchmarks UNISIM supports the POSIX Pthread library. 
With this we were able to write our own test programs. We implemented different sort 
algorithms (quick sort, merge sort) and matrix multiplication methods in a parallel 
fashion. Given that, we implemented new coherency protocols (MSI), besides the 
already existent ones (MESI), we also needed some applications to test the 
correctitude of the implementation. For this, we developed a test application that was 
preserving the order of operations in mathematical computation using threads: the 
adding thread had to wait for the multiplying thread, etc. 

The TLM simulator provided a very fast simulation. On this version we were 
able to run benchmarks from the PARSEC [47] and SPLASH-2 [48] suites. 

We did not use UNISIM since it does not provide any information about the 
power consumption or area integration. Integrating such a functionality proved to be 
difficult. 
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6.4.2 M5 

M5 [49] is a well known full system multi-core simulator. It was recently merged 
with the GEMS simulator and called gem5. 

M5 is able to simulate Alpha architectures. Supported ISAs are: Alpha, MIPS, 
Sparc. It can run in two modes: full system and application only. In full system it is 
able to boot the Linux operating system. It supports different levels of detailed 
simulation: from very fast inaccurate simulation to very accurate (and slow). These 
levels of detail can be changed during a simulation process so, for example, the boot 
of the Linux kernel can be simulated with low accuracy but when the benchmark is 
started the accuracy is increased. 

M5 can simulate multi-computer systems, tied through networks. We were 
able to run the SPLASH-2 suite of benchmarks in the application only mode. On the 
full system simulator we also ran the SPLASH-2 benchmarks and our own 
applications. 

M5 lacks the support for power consumption estimation or other objectives 
besides the speed related ones. 

A FADSE connector for M5 has been developed. 

6.4.3 Multi2Sim 

Multi2Sim simulates a multi-core multi-threaded superscalar pipelined architecture. It 
supports the x86 ISA which allows it to run benchmarks compiled. It is an application 
only simulator (no full system) and supports most of the benchmarks suites available: 
SPLASH2, PARSEC, SPEC, etc. It is also able to simulate OpenCL programs. 

We integrated Multi2Sim with FADSE using a connector. 
Multi2Sim does not include any power or area of integration outputs but the 

authors provide a list of outputs that can be used in conjunction with McPAT [50] to 
extract these metrics. McPAT is a library which is able to provide information about 
power consumption, area integration for multi-core or System on Chip (SoC) 
architectures. It is easily configured through a XML interface. We developed a tool 
that can extract metrics from the outputs of the Multi2Sim and insert them 
automatically in the XML configuration file of McPAT. The problem is that 
Multi2Sim outputs only dynamic information about the accesses in caches, memory, 
and not about the actual structure of system architecture. This meant that we had to 
use the default Alpha architecture implemented by McPAT as a base architecture and 
insert only the number of accesses. This gave us an estimation of the dynamic power 
consumed by the simulated architecture, but not more. Our script is limited, for the 
time being, at single-core architectures, but a multi-core implementation could be 
easily provided. 

6.4.4 SuperESCalar Simulator 

SuperESCalar Simulator (SESC) [51] multi-core capable cycle level accurate 
simulator developed at the University of California. The advantage of this simulator is 
that it integrates with HotSpot [52], Wattch [43] and Cacti [53]. Through this tools it 
can provide to the user (besides the usual CPI) the power consumption and area 
required by the configuration. 

The RedHat Linux based HPC computer from “Lucian Blaga” University of 
Sibiu, on which we ran the simulations, was not supported by the SESC simulator. 
Because of this, the project was abandoned and no connector was written for it. 
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6.4.5 SCoPE 

SCoPE is a simulator used together with M3Explorer. A connector has been 
developed by the authors of SCoPE and M3Explorer for the M3Explorer DSE tool. 
Since FADSE is similar at the interface level with M3Explorer, a FADSE connector 
for the SCoPE simulator would require very little time to develop. Since SCoPE can 
simulate different architectures from multi-cores to multi-processor SoCs and it 
outputs performance metrics and power consumption it was a good candidate for a 
DSE with FADSE. Another advantage is that SCoPE is a TLM simulator meaning 
that it simulates extremely fast, a good feature for the lengthy design space 
explorations. 

Together with the student Camil Bancioiu we tried to use this simulator in our 
work. We were able to describe our own extensible multi-core architecture based on 
ARM architecture. On this architecture, we ran the single-threaded MPEG 
benchmark. When we extended the work to multi-core architectures we encountered 
errors in the code. At a closer analysis of the code, we observed that the current 
version of the simulator did not support data caches, a feature very important in our 
opinion. We contacted the authors of the SCoPE simulator and a new version is in 
development that will solve these problems. 

6.4.6 Graphite 

Graphite is a simulator for multi-core architectures. The novelty of this simulator 
compared to the previous analyzed ones is the distributed simulation. Its scope is to 
allow the exploration of systems with dozens to thousands of cores. The simulator 
creates a thread for each core in the simulator. This pool of threads is then distributed 
on all the cores from all the hosts in the network. 

We are currently working in integrating this simulator with FADSE. 
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7 Multi-objective Optimization of System on Chip 
Architectures 

 
This chapter presents our proposed method for performing an automatic application 
driven design space exploration for System-on-Chip (SoC) designs. We connect 
FADSE with UniMap [54], a SoC simulator. The goal is that, for a given application, 
to automatically find the best SoC architecture, in a multi-objective way. We have 
three objectives: SoC energy consumption, SoC area and application runtime. 

With UniMap, we model and simulate an entire System-on-Chip, made of tens 
of heterogeneous Intellectual Property (IP) cores, mapped onto the tiles of a Network-
on-Chip interconnection network. 

We propose a practical DSE workflow, which allows us to determine, for any 
particular application, the SoC designs that consume the smallest amount of energy, 
occupy the smallest area and allow the application to execute the fastest. The DSE 
process is performed with multi-objective algorithms from two classes. Having two 
genetics and two bio-inspired algorithms, we compare four multi-objective techniques 
aiming to find the algorithm that performs the best. 
 

 
Figure 6.4-1 The scheduling, application mapping and routing problems [55] 

 
The APCG is used as input for an application mapping algorithm, which maps 

the given IP cores onto the nodes of a given NoC architecture, such that different 
metrics of interest are optimized. Obviously, the mapping algorithm must be aware of 
the routing algorithm, i.e. how data is sent from one network node to another. 

7.1 UniMap Overview 

UniMap integrates different mapping algorithms and also a Network-on-Chip 
simulator. Some algorithms are available in literature and some were improved by the 
author. The NoC simulator is also developed by Ciprian Radu. UniMap was 
developed so that different algorithms may be evaluated and optimized in a unified 
manner, on multiple NoC designs. If a NoC architecture is given, UniMap can be used 
to find the best mapping in terms of energy consumption, network latency, etc. for 
any parallel application. 
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7.2 Design Space Exploration Workflow 

Ideally would be to search for the best NoC architecture for every possible application 
mapping. This is actually the exhaustive approach in which we would take every 
possible placement of IP cores onto the NoC nodes and for each placement we would 
try all the available NoC designs and evaluate their performance using ns-3 NoC, 
UniMap’s simulator. The DSE mechanism described is practically a DSE in an inner 
DSE because the UniMap DSE includes FADSE. Our DSE workflow can be made 
faster by serializing FADSE DSE after UniMap DSE. By doing so, we evaluate each 
mapping on just one SoC design. UniMap will output a Pareto front and FADSE will 
take the mappings from this front and search for each one the best System-on-Chip. 
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UniMap

mappings

database

UniMap

NoC

application

mapping

UniMap

NoC simulator

Select

mapping

Save best

mappings

UniMap

IP cores

database

Select
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Simulate SoC

architecture

Output: 

- application runtime

- SoC energy 

- SoC area  
Figure 7.2-1 Application driven DSE workflow for SoC designs 

 
 We can still reduce the time complexity of our DSE approach by letting 
UniMap use an analytical model for evaluating the application mappings, on a default 
System-on-Chip design. UniMap no longer uses a NoC simulator to evaluate 
mappings. This DSE workflow is less accurate than the previous two, but it is more 
feasible. Using an analytical model, we can evaluate a mapping in less than a second. 
With a bit energy model we estimated the NoC communication energy on our HPC 
system.  
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 Our Design Space Exploration workflow begins from UniMap, which maps 
applications onto Network-on-Chip designs. Each mapping is evaluated with an 
analytical model [56] that estimates the NoC communication energy. For every 
application, UniMap saves the best mappings it finds into a database. 

FADSE then searches, for each application, the best System-on-Chip 
architecture. The first ten best mappings1 found with UniMap are used by FADSE (for 
each application). These best mappings are taken from all best mappings obtained 
with all UniMap heuristic algorithms: Simulated Annealing, Branch and Bound, 
Optimized Simulated Annealing and Elitist Genetic Algorithm and Elitist 
Evolutionary Strategy, with all their variants [55]. 

Then we use FADSE to do a Design Space Exploration, guided by a multi-
objective algorithm. Different System-on-Chip designs are simulated by FADSE. The 
mapping provided to FADSE says where each IP core is placed onto the NoC. It also 
says what type of IP core is associated to each task. However, FADSE will 
automatically simulate with other compatible IP core types as well. After it chooses 
the core types, FADSE generates a System-on-Chip by topologically placing the cores 
onto the NoC. FADSE automatically configures the Network-on-Chip. After that, 
UniMap’s ns-3 NoC simulator is called by FADSE. This simulator measures 
application runtime, SoC energy and SoC area (our three DSE objectives). 

We work with the E3S [57] IP core library. It provides information regarding 
the power consumed by each IP core for running a particular application task. IP core 
area and power consumption, while the core is idle, are also specified. 

Our UniMap NoC simulator integrates ORION 2.0 [58]. This allows us to 
estimate Network-on-Chip power and area. We consider both leakage and dynamic 
power, for routers and communication links. In a similar way, the area occupied by 
the NoC is computed as the sum of routers’ and links’ area. 

Each application runs for a given number of CTG iterations. Application 
runtime is the simulation time required by the benchmark to finish.  A CTG iteration 
means running a benchmark until it is completed. Several iterations mean that we 
restart the benchmark after a specified (in the benchmark description) amount of time. 
An example can be for MPEG where a new frame has to be processed every 1/24 
seconds. This might lead to congestions in the network. The number of CTG 
iterations is determined empirically such that the simulations run fast enough that our 
DSE finishes in a reasonable amount of time. 

Our proposed DSE workflow outputs a Pareto front with the near optimal 
System-on-Chip architectures found for a given application. 

The following section describes our experimental methodology. We give 
details regarding how exactly we did the simulations, what benchmarks we used, the 
varied design parameters and how we configured UniMap and FADSE. During our 
DSE process we did not modify the Network-on-Chip topology. This is the NoC 
element that is essentially used by the mapping algorithms. Modifying it would create 
inconsistencies. Network-on-Chip application mapping is by definition topology 
dependent. Nevertheless, our workflow might be applied to different NoC topologies. 
This would have the advantage of finding the most suitable NoC topology, as well. In 
order to do so, we would need to adapt our mapping algorithms for these other 
Network-on-Chip topologies as well. 

                                                 
1 Depending on resources available, a bigger number of best mappings may be used 



Multi-objective Optimization of System on Chip Architectures 
 

 

Page 49 of 65 

7.3 Methodology 

Since we present in this thesis only preliminary results, we worked with just with four 
benchmarks: telecom, MPEG-4, H.264 (CTG 0) and VOPD (CTG 0). We plan to do 
more simulations in the future and to use more applications. 

Using all application mapping algorithms from UniMap, we selected the first 
ten best mappings that we found for each application mentioned above. telecom is a 
benchmark with 30 IP cores, which are mapped on a 6x5 2D mesh Network-on-Chip. 
MPEG-4 has 12 IP cores and H.264 (CTG 0) and VOPD have 16. MPEG-4 is mapped 
onto a 4x3 2D mesh and H.264 (CTG 0) and VOPD use a 4x4 2D mesh. 

A Communication Task Graph (CTG) describes an application though its 
traffic pattern. The CTG can be reiterated multiple times. By doing so, we can 
simulate successive executions of the application. Since we only afforded to run each 
benchmark for less than ten minutes, we chosed the number of CTG iterations 
accordingly. The following table illustrates this aspect. 
 

Benchmark CTG iterations 

telecom 10 
MPEG-4 2 

H.264 (CTG 0) 4 
VOPD (CTG 0) 1 

 
We worked with the IP core library provided by E3S. It contains a total of 34 

cores. telecom is an E3S benchmark. As such, we know exactly what cores can 
execute each of its tasks. There are on average 20 core types for each task of the 
telecom application. For the other three benchmarks, which are not from the E3S 
suite, we consider that any IP core from the E3S library can execute any task of our 
non E3S benchmarks. This is possible because E3S considers for each IP core a 
generic task, for which we know the execution time and power consumption. 

We have considered the following Network-on-Chip parameters: network 
clock frequency, input buffer size, flit size, packet size and routing protocol. The 
NoCs frequency is varied from 100 MHz to 1 GHz, using a step of 100 MHz. The 
input buffers can uniformly hold from one to ten flits. The flit size is in bytes, starting 
from 4 and going up to 256, using a geometric progression with ratio two. The packet 
size is minimum two flits and maximum ten flits. The routing protocol can be either 
XY or YX (both are variants of Dimension Order Routing). We automatically set the 
NoC bandwidth to a value that allows one flit to be transmitted in one Network-on-
Chip clock cycle. 

The next table presents the size of the search space for each benchmark. We 
have a maximum of N = 12600 possible NoC designs but, the search space generated 
by the IP core types (C) is considerably much bigger. 
 

Benchmark Search space size 

telecom 12600.2030 ≈ 1.35.1043 
MPEG-4 12600.3412 ≈ 3.1022 

H.264 (CTG 0) 12600.3416 ≈ 4.1028 
VOPD (CTG 0) 12600.3416 ≈ 4.1028 
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We configured our Framework for Automatic Design Space Exploration to 
work for this research with four multi-objective techniques: NSGA-II, SPEA2, 
SMPSO and OMPSO. We set all algorithms to stop after 50 generations. 

NSGA-II was set to work with a population of 100 individuals. Single point 
crossover, bit flip mutation and binary tournament selection were the well known 
genetic operators that we used. The benchmark telecom has the highest number of IP 
cores: 30. We also vary with FADSE five NoC parameters. Thus, our largest 
chromosome has 35 genes. This suggests a mutation probability of 3% (1/n, where n 
is the number of parameters). The crossover probability was set to 90%. 

SPEA2 was configured exactly like NSGA-II and the archive size was set to 
100. 

In the same manner, SMPSO and OMOPSO have an archive of size 100 and 
they work with a swarm of 100 particles. 

7.4 Results 

In this paragraph we present the results obtained using the DSE technique described 
in the previous paragraph. Due to time required for simulation we were able to 
explore ten mappings only on the telecom benchmark. On the other benchmarks we 
were able to explore a single mapping: the best one found analytically.  

7.4.1 Design Space Exploration on the Telecom Benchmark 

We ran telecom on the first ten best mappings and computed the hypervolume for 
each one and then we averaged the results. The results are presented in Figure 7.4-1. 
From this metric we can conclude that the particle swarm optimization algorithms 
(OMOPSO and SMPSO) converge faster than the genetic ones (NSGA-II and 
SPEA2), but the results obtained after 9-10 generations by the genetic algorithm are 
better from the quality point of view. It is interesting to observe that the algorithms 
from the same class (genetic/PSO) obtain similar results. It is more important the type 
of the algorithm than the actual specific implementation. The two genetic algorithms 
have similar results with a bit faster convergence for the NSGA-II algorithm, but the 
final hypervolume value is slightly better for SPEA2. SMPSO has better results than 
OMOPSO from both convergence speed and quality of results point of view.  
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Figure 7.4-1 Average hypervolume over all ten best telecom mappings 

 
The next step was to use the coverage metric to compare the results obtained 

by the algorithms. We performed comparisons between all the algorithms on all the 
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benchmarks. Due to space constraints we present only the comparison performed 
between a genetic algorithm (SPEA2) and a particle swarm optimization (OMOPSO). 
The results are depicted in Figure 7.4-2.  
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Figure 7.4-2 Coverage comparison between SPEA2 and SMPSO on the telecom benchmark 

 
It can be seen that the results obtained by the genetic algorithm clearly 

dominate the results obtained by the PSO algorithm. From the other comparisons 
using the coverage metric (not shown here) we observed that SPEA2 is better than 
NSGA-II and that from the PSO algorithms OMOPSO has a better coverage (different 
than the information given by the hypervolume). 

Since the hypervolume metric is mostly used for measuring convergence 
speed and we proved in previous experiments that coverage can be misleading, we 
decided to compare the obtained Pareto fronts approximation. The results are shown 
in Figure 7.4-3. We took the best results found by all the algorithms and kept only the 
nondominated points. We observed that the nondominated points are only obtained by 
the genetic algorithms. Another observation is that results are found from all the ten 
mappings, even if, by using the analytical model, mapping 1 is the best one (only 
from the energy point of view). We analyzed the results considering the last 
observation and we saw that the best energy is obtained for mapping 6. The 
architecture with the smallest area was found for mappings 3 and 5. The two 
mappings are nondominated as mapping 3 has better energy consumption while 
mapping 5 has a better application runtime. From the application runtime point of 
view again mapping 6 is the best one.  

We would have expected to obtain the best results, at least from an energy 
point of view with the first mapping. The results can be explained by the fact that the 
analytical model does not take into consideration the eventual collisions (network 
congestion) that might appear in the network while the simulator can take them into 
account. Another reason for this result is the fact that FADSE does not exhaustively 
explore the design space. This means that for a certain mapping we might find a 
hardware configuration which is very good but was not discovered in the other 
explorations. These results will be further explored and analyzed in future work. 
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Figure 7.4-3 Best configurations found by all four algorithms for telecom benchmark 

 
We analyzed the best SoC configurations found for each mapping for the 

telecom benchmark. As we said, for mapping 6 we found the best architecture from 
both energy and runtime point of view. The two SoC designs using this mapping were 
found by the NSGA-II algorithm. SPEA2 found the best configurations from an area 
point of view. The following table describes the architectural parameters of the SoC 
designs. The table is also presented by us in [55]. 
 

NoC parameters 
Objective Algorithm Mapping Frequency 

[MHz] 

Buffer 

size 

[flits] 

Flit 

size 

[bytes] 

Packet 

size 

[flits] 

Routing 

SoC 

energy 

[Joule] 

SoC 

area 

[mm2] 

Application 

runtime 

[ms] 

Energy NSGA-II 6 100 4 4 10 YX 0.095159 50.113 46.1144 
Area SPEA2 5 200 1 4 10 XY 0.158177 37.366 46.1132 
Area SPEA2 3 400 1 4 10 YX 0.167928 37.366 46.1111 

Runtime NSGA-II 6 900 4 32 6 YX 0.341914 81.227 45.4 

 
As expected, we obtained the lowest energy consumption with the smallest 

frequency allowed in our DSE process. 
In accordance with our intuition, we obtained the lowest energy with a 

System-on-Chip design that uses a NoC running at the minimum frequency permitted 
by our DSE model. We also observed that the SoCs having the smallest area use a 
NoC with buffers of just one flit in size and some of the smallest IP cores. Our two 
area optimal SoC designs use only a quarter of the NoC buffering resources used by 
our best energy and application runtime SoC architectures. Our two area-optimal 
SoCs practically differ by their Network-on-Chip frequency. One of the two SoCs is 
faster than the other because it uses a NoC twice faster. In terms of application 
runtime, our optimal runtime SoC is more than half a millisecond faster than our other 
three optimal Systems-on-Chip. This fastest SoC design uses a much faster Network-
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on-Chip and bigger packets. This obviously impacts on SoC energy and area. Finally, 
we observe our optimal SoCs use both XY and YX routing. This shows that routing 
algorithms influence the SoC's performance. 

7.4.2 Design Space Exploration on the MPEG-4 benchmark 

Our next experiment was done on the best mapping analytically found for the MPEG-
4 benchmark. Since the time required for simulation on this benchmark was longer, 
we were able to perform a DSE only on one mapping. We computed all the metrics 
like in the previous experiment. In Figure 7.4-4 we present the hypervolume value 
obtained by each algorithm during the 50 generations. 
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Figure 7.4-4 Hypervolume obtained by all the algorithms for the MPEG-4 benchmark 

 
Since we ran only on one mapping and do not present an average results the 

curve is not as smooth as in previous experiment but the conclusions remain fairly the 
same. The two genetic algorithms continue to find the best SoC designs, while the 
PSO algorithms do not provide such good results. Again the PSO algorithms converge 
very fast but this time NSGA-II has a very similar behavior. Form this point of view it 
seems that NSGA-II finds the best results. From the perspective of results the PSO 
algorithms perform poorly compared to the genetic ones. 

Similar with previous chapter, we compute the coverage metric. First, we 
compare the two genetic algorithms with the purpose of selecting the best one from 
the coverage metric point of view. The results are shown in Figure 7.4-5. For the first 
37 generations the algorithms have similar results. After these generations SPEA2 
seems to gain an advantage. This is somehow different from what we concluded from 
the hypervolume metric. Nevertheless, we decided to choose SPEA2 as the best 
genetic algorithm in this experiment. 

A comparison was made between the Pareto fronts approximation found by 
the two genetic algorithms. We could not decide on one best algorithm. NSGA-II 
finds better results in some areas of the space while its solutions are dominated (by 
SPEA2 solutions) in other regions. Still we did observe a slightly larger spread of 
solutions found by the NSGA-II algorithm. Choosing a winner is hard and it truly 
depends on the requirements of the designer. 
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Figure 7.4-5 Coverage comparison between NSGA-II and SPEA2, for MPEG-4 

 
Second in Figure 7.4-6 we perform a comparison between the two selected 

PSO algorithms: OMOPSO and SMPSO. For the first generations OMOPSO 
performs significantly better and even after generation 20 it is still better from the 
coverage point of view. After 45 generations the results are similar. We selected 
OMOPSO as the best algorithm from the PSO ones because it has an overall better 
quality of results. As in the previous comparison we looked at the Pareto front 
approximations obtained by the two PSO algorithms. From our (subjective) 
perspective the SMPSO algorithm seemed to have better results (better spread of 
solutions). 

For our final comparison using the coverage metric, we selected SPEA2 and 
OMOPSO, the best performing algorithms from this point of view from the previous 
comparisons. The results are presented in Figure 7.4-7. Due to the faster convergence 
of the PSO algorithm during the first generations, the individuals obtained by 
OMOPSO dominate the individuals obtained by SPEA2. But after 7-8 generations the 
genetic algorithm manages to surpass the PSO algorithm reaching an almost 100% 
domination. We analyzed the final Pareto fronts approximations of both algorithms 
and the conclusion remains the same: the genetic algorithm obtains clearly better 
results. 
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Figure 7.4-6 Coverage comparison between SMPSO and OMOPSO, for MPEG-4 
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Figure 7.4-7 Coverage comparison between SPEA2 and OMOPSO, for MPEG-4 

 
As a final result in this experiment we present one of the Pareto fronts 

approximations found by the algorithms. We selected the front obtained by NSGA-II 
since from our perspective it had the best results: the best spread of solutions, a good 
hypervolume value and even from a coverage point of view quite close to the SPEA2 
algorithm. The Pareto front approximation is depicted in Figure 7.4-8 (since this is a 
joint work, we presented this figure also in [55]). The figure depicts an interpolation 
of the points for a better visibility of the obtained 3D surface. 

With this we proved that FADSE is able to find good configurations on 
problems with three objectives and that the obtained solutions are spread along a 
surface and here is no single solution that is the best on all the objectives (the 
objectives are contradictory). 
 
 

 
Figure 7.4-8 Surface obtained by interpolating the points in the objective space found by NSGA-

II 
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7.4.3 Design Space Exploration on H.264 and VOPD benchmarks 

The last experiments were conducted on H.264 and VOPD benchmarks. The obtained 
results were similar with the ones from the previous experiments. Due to space 
constrains we present only the hypervolume values obtained; see Figure 7.4-9 and 
Figure 7.4-10. 
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Figure 7.4-9 Hypervolume obtained by all the algorithms for the H.264 benchmark 

 

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

H
y

p
e

rv
o

lu
m

e

NSGA-II
SPEA2
SMPSO
OMOPSO

 
Figure 7.4-10 Hypervolume obtained by all the benchmarks for the VOPD benchmark 

 
 In both experiments the genetic algorithms perform better than the PSO ones. 
For the H.264 decoder benchmark the PSO algorithms have the fastest convergence 
speed but NSGA-II is also very close and finally the genetic algorithm even obtains 
better results. Of course running multiple times would have given a more correct 
image, but the DSE process, even with the major simplifications we proposed is still 
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lengthy. On VOPD, SPEA2 has the fastest convergence speed and a very good quality 
of results. 

As a final conclusion, from all our experiments in this chapter we can say that 
the genetic algorithms are the best for this specific problem. 

7.5 Improving the MANJAC Many-core System 

The MANJAC [59] is a system with 64 native JAVA execution multi-core, multi-
threaded processors arranged into an 8x8 mesh. Each processor contains 6 Jamuth 
[60] cores, and each core is able to run 4 threads (SMT). 

We started porting a middleware on the MANJAC system called OCµ 
Middleware. For this, a lighter implementation that could replace the communication 
library used (JXTA - http://en.wikipedia.org/wiki/JXTA) had to be implemented. 
Special care was necessary for several reasons: 

- not all the methods implemented in the Java JDK are available on Jamuth; 
- the scheduler always runs the thread with the highest priority. If there are n 

active slots (n = 4) for threads then n threads can run in parallel. If there 
are more than n threads in the application and a thread waits for a message 
from a thread that it is not active a deadlock will be reached. To avoid this, 
the threads have to let other threads execute by going themselves to sleep; 

- problems might arise when calling blocking methods (e.g. wait for a 
message from the network). These can also block a thread and lead to 
deadlocks. The calls to blocking methods have to be bounded by a timer. 

 More details about how to solve all these problems and about the 
implementation can be found in our technical report [61]. 

Improvements to the initialization phase for the MANJAC system were also 
done. We proposed new methods that allowed a better initialization phase that could 
cope with failing nodes in the mesh. The original implementation was prone to 
failures. Each node was responsible of the initialization of its North neighbor. If a 
node failed the entire column above him would not be initialized. We proposed two 
simple methods that could avoid such situations. The first method we proposed, 
changed the behavior of the nodes by making them send initialization messages to 
both North and East neighbors. The second method was a bit more advanced and was 
able to understand the direction from where it has received the initialization and adapt 
itself to where it should send itself the init messages. For this we also developed a 
monitoring application which allowed us to observe live, through a GUI, the 
initialization process. 

More details about all this work can be found in our technical report 
“Introduction to the MANJAC system” [61]. 
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8 Conclusions and Further Work 

 
This work has the following contributions: 

• We proposed a classification method which helped us during our experiments. 
The evolutionary/bio-inspired distinction was visible even in the results 
obtained in Chapter 7 where the algorithms grouped according to their class. 

• We compared two simple evolutionary algorithms (SEMO and FEMO) on 
synthetic functions (LOTZ, DTLZ). We concluded that FEMO provides better 
results. 

• We analyzed the fitness assignment process from two evolutionary algorithms 
(NSGA-II and SPEA2). The conclusions we drawn from this analysis were in 
concordance with the experimental results (SPEA2 produces more duplicates). 

• We selected performance and quality metrics for multi-objective algorithms 
that do not require the true Pareto front to be known. 

• FADSE, a tool for automatic design space exploration, was developed 
• FADSE includes many design space exploration algorithms (through the 

integration with jMetal). 
• We distributed the evaluation process with FADSE to accelerate the DSE 

process if resources are available. As far as we know, FADSE is the only 
publicly available general DSE framework for computer architectures which 
allows distributed evaluation. 

• To run distributed the DSE algorithms had to be adapted. We changed the 
following algorithms: AbBYS, Densea, FastPGA, IBEA, NSGA-II, 
OMOPSO, PESA2, SMPSO and SPEA2. 

• We provide a lot of flexibility for the allocated resources to FADSE. The 
number of clients can be increased/decreased dynamically during the DSE 
process. 

• FADSE was run on different HPC systems, Linux and Windows based. 
• As a further acceleration technique implemented in FADSE is the database 

integration. This allows us to reuse previous simulated configurations. We 
reached up to 67% reuse from the database. This means a great reduction in 
the time required for a DSE process. 

• We implemented reliability techniques in FADSE: if clients do not respond, 
networks fail, the simulation is resubmitted to another client. 

• For problems like: power loss or if the server stops responding, we 
implemented a checkpointing mechanism. This allows us to restart the DSE 
process from an intermediate state. The checkpointing mechanism can also be 
used to start FADSE from a user defined initial population. 

• We developed an easy to use interface for connectors to the computer 
simulators. The work of the connector developer is simplified through 
different helper classes which mask the database integration and other aspects. 
The interface hides from the connector the DSE algorithm used and all the 
different settings that it can have. 

• With help from our M.Sc. and B.Sc. students and collaborators we have 
developed connectors for the following simulators: GAP, GAPtimize, M-SIM 
2, M-SIM 3, UniMap, M5 and Multi2Sim. 
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• Starting from the M3Explorer DSE tool we have developed our own XML 
configuration file. This XML is easy to use and most importantly flexible 
enough so that any simulator can be connected to FADSE and all the required 
parameters describe within this input file. 

• The XML interface allows the user to configure the connector it wants to use. 
From this file the user can configure the database connection, benchmarks 
he/she wants to use, the parameters, the objectives and other relations 
(hierarchies) and/or constraints between them. 

• Several metrics were implemented in FADSE: hypervolume, coverage, error 
ratio, “7 Point” average distance, etc. 

• We have included into FADSE several methods to express domain knowledge: 
constraints, hierarchical parameters, fuzzy rules. 

• Constraints were proposed and used by other DSE tools too. We observed that, 
when constraints are used, there tend to be many infeasible individuals in the 
population, which leads to a lower convergence. We changed the DSE 
algorithms and forced them (if the user desires) to generate at least a (user 
specified) percentage of feasible individuals in each offspring population. This 
improved the results and we used this technique in most of the experiments 
that employed constraints. 

• In our experiments we reached a point where some parameters had to be 
deactivated. We decided to implement an extensible mechanism to express 
this knowledge. We researched the different situations that can arise when 
parameters depend on one another. We developed an easy to use interface to 
describe the hierarchies between parameters. 

• The hierarchy information had to be passed to the DSE algorithms thus we 
proposed/developed new crossover and mutation operators. 

• We propose to express domain-knowledge using fuzzy rules. This allows a 
designer to express general knowledge about the architecture in a close to 
natural language format. 

• To our knowledge we are the first to use fuzzy rules as a mean to express prior 
knowledge into a computer systems design space exploration tool. 

• We integrated jFuzzyLogic library into FADSE, which allows us to use the 
standard language FCL to describe fuzzy rules and implements multiple 
inference systems. 

• We proposed two new mutation operators, which could take into consideration 
the information provided by the fuzzy rules. Both of them are derived from the 
classical bit flip mutation but with different methods to compute the 
probability to use the value obtained after defuzzification. The first method 
uses a constant probability to apply the information while for the other method 
we used a Gaussian distribution. For the second method we are not allowing it 
to have a probability higher than 80% and not lower than 1/number of 
parameters. We also using information about the membership value of the 
value obtained after defuzzification. We use this information as a measure of 
the confidence in the obtained value. 

• We proposed some other enhancements. We discovered that designers do not 
specify the fuzzy rules at the parameter level (number of sets in the level 1 
cache, block size, associativity). They sometimes prefer to use a more general 
notion (level 1 cache size). To allow this kind of interaction we proposed the 
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so called virtual parameters. Users are now allowed to combine several 
parameters into a single one and use that one as in input in fuzzy rules. 

• We are proposing a random defuzzifier which allows the user to configure the 
minimum membership of the values taken into consideration. We are using 
this defuzzification method when the shape of the membership values defined 
for the rules are (close to) rectangular. 

• We have proposed a method for calculating GAP’s hardware complexity. 
• DSE was performed on GAP with great results. 
• We proved that FADSE can find better configurations than the ones found 

after a manual exploration of the GAP architecture. We obtained 
configurations with the same CPI but half the complexity. We proved that 
human designers can be biased and might not discover some subtle relations 
between the parameters. 

• Single objective optimizations were conducted on code optimization tools 
with FADSE that led to good results. 

• We performed designs space exploration of computer architectures at the same 
time with code optimization tools. FADSE could cope with this challenge and 
good results were obtained. 

• We compared three DSE algorithms (NSGA-II, SPEA2 and SMPSO) and saw 
how they perform on the GAP architecture (with and without GAPtimize). We 
concluded that SMPSO is the best both in terms of convergence speed and 
quality of solutions. NSGA-II performed a little better than SPEA2 when only 
GAP was explored but the situation reversed when both GAP and GAPtimize 
were optimized at the same time. 

• From the algorithm comparisons we concluded that in fact all the algorithms 
find very good results and that metrics like coverage might be misleading. We 
proposed to use metrics based on e-dominance. 

• We proved that the integration with a database can reduce the design space 
exploration time to a large extent. We obtained reuse factors of over 60% in 
some situations. 

• A method was proposed to use the fuzzy rule system integrated in FADSE 
with rules generated automatically from previous explorations. We showed 
that these rules can reduce the search time and can improve the results. 

• The hierarchical parameters were tested with optimizations from GAPtimize. 
Good preliminary results were obtained. 

• We continued the work done by Árpád Gellért in his PhD thesis, where he has 
performed a manual exploration of an Alpha architecture using the M-SIM 2 
simulator. He varied only 2 parameters, since the design space exploration was 
manual. We extended this work to 19 parameters with FADSE. 

• We performed different experiments with M-SIM 2 and FADSE: using 
constraints, starting from initial good configurations, running with information 
from fuzzy rules (constant and Gaussian distribution of probability to use the 
information). 

• We showed that adding domain-knowledge can improve the results. But 
caution is necessary. We observed in our experiments on both GAP and M-
SIM that forcing the algorithm to apply the information provided from the 
outside leads to a loss in diversity if the information is not diverse itself. In 
other words when we simulated with M-SIM and only a few rules/linguistic 
terms were used, applying this information with a great probability lead to a 
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loss in diversity and eventually not so good results. On GAP where many rules 
with many linguistic terms were used, the higher probability leads in fact to 
better results. On another experiment we introduced some good configurations 
in the initial population. The algorithm converged fast to very good results but 
it did not spread along the whole Pareto surface like the other runs did. The 
problem was that the good initial configurations were better than all the other 
individuals inserted randomly in the population, but at the same time they 
were very similar (differed in only 2 parameters). Being the best ones they 
survived for the next generations and became parents, leading to similar 
children. The mutation was unable to change too much the individuals and the 
algorithm failed to explore certain areas of the Pareto front. 

• We integrated FADSE with M-SIM 3 and showed that FADSE can be used 
with multi-core architecture simulators. 

• An overview of multi-core simulators has been performed. We also improved 
some of them by implementing new coherency protocols, partially integrated 
power consumption models, etc. 

• FADSE was integrated with UniMap, a SoC simulator developed by Ciprian 
Radu in his PhD thesis. Together we performed automatic DSE on SoC 
systems. We also compared four algorithms on this new problem. 

• For the SoC exploration we concluded that the genetic algorithms perform 
better than the PSO ones, but still, the PSO algorithms converge a little bit 
faster. 
As future work we plan to introduce a neural network along side the DSE 

algorithms. As the DSE process evaluates individuals they will be used to train the 
neural network. When the confidence in the neural network will be high enough, it 
will be given random values (random values for the parameters) and it will try to 
predict the values of the objectives. The most promising individuals will be injected in 
the offspring population. 

We plan to continue the work started with the fuzzy rules and propose new 
methods to include the information provided by them. 
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